electrical coupling
Recently Published Documents


TOTAL DOCUMENTS

837
(FIVE YEARS 120)

H-INDEX

70
(FIVE YEARS 4)

Author(s):  
Achille Angrisani Armenio ◽  
Alessandro Leveratto ◽  
Gianluca De Marzi ◽  
Andrea Traverso ◽  
Cristina Bernini ◽  
...  

Abstract One of the features unique in Bi-2212/Ag wires is the network of bridges between the filaments formed by grains grown through the Ag matrix during the partial-melt heat treatment process. Although these interconnections favor a redistribution of the current among the filaments allowing high critical current density, they represent a strong electrical coupling between the filaments themself. Such a coupling increases the AC losses, present also in case of charge and discharge of DC magnets, principal applications of this kind of superconductor. In this work, through transport and magnetic measurements and their comparison, we study the behavior of these bridges as a function of applied magnetic field and temperature and the implications they have on the electrical coupling. The experiment has been performed on two multifilamentary wires prepared by GDG-PIT process starting from two commercial Bi-2212 precursor powders: Nexans and Engi-Mat. The reported results provide information on the effective length scale on which the filaments are coupled as a function of the field and temperature and we believe that such findings can be useful in magnet design.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1900
Author(s):  
Cheng-Chih Chung ◽  
Chye-Gen Chin ◽  
Yung-Kuo Lin ◽  
Yao-Chang Chen ◽  
Wan-Li Cheng ◽  
...  

Atrial fibrosis plays a key role in atrial myopathy, resulting in the genesis of atrial fibrillation (AF). The abnormal distribution of fibrotic tissue, electrical coupling, paracrine interactions, and biomechanical–electrical interactions have all been suggested as causes of fibrosis-related arrhythmogenesis. Moreover, the regional difference in fibrogenesis, specifically the left atrium (LA) exhibiting a higher arrhythmogenesis and level of fibrosis than the right atrium (RA) in AF, is a key contributor to atrial arrhythmogenesis. LA fibroblasts have greater profibrotic cellular activities than RA fibroblasts, but knowledge about the regional diversity of atrial regional fibrogenesis remains limited. This article provides a comprehensive review of research findings on the association between fibrogenesis and arrhythmogenesis from laboratory to clinical evidence and updates the current understanding of the potential mechanism underlying the difference in fibrogenesis between the LA and RA.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009644
Author(s):  
Md Ashfaq Ahmed ◽  
Sharmila Venugopal ◽  
Ranu Jung

Peristalsis, the coordinated contraction—relaxation of the muscles of the stomach is important for normal gastric motility and is impaired in motility disorders. Coordinated electrical depolarizations that originate and propagate within a network of interconnected layers of interstitial cells of Cajal (ICC) and smooth muscle (SM) cells of the stomach wall as a slow-wave, underly peristalsis. Normally, the gastric slow-wave oscillates with a single period and uniform rostrocaudal lag, exhibiting network entrainment. Understanding of the integrative role of neurotransmission and intercellular coupling in the propagation of an entrained gastric slow-wave, important for understanding motility disorders, however, remains incomplete. Using a computational framework constituted of a novel gastric motility network (GMN) model we address the hypothesis that engaging biological oscillators (i.e., ICCs) by constitutive gap junction coupling mechanisms and enteric neural innervation activated signals can confer a robust entrained gastric slow-wave. We demonstrate that while a decreasing enteric neural innervation gradient that modulates the intracellular IP3 concentration in the ICCs can guide the aboral slow-wave propagation essential for peristalsis, engaging ICCs by recruiting the exchange of second messengers (inositol trisphosphate (IP3) and Ca2+) ensures a robust entrained longitudinal slow-wave, even in the presence of biological variability in electrical coupling strengths. Our GMN with the distinct intercellular coupling in conjunction with the intracellular feedback pathways and a rostrocaudal enteric neural innervation gradient allows gastric slow waves to oscillate with a moderate range of frequencies and to propagate with a broad range of velocities, thus preventing decoupling observed in motility disorders. Overall, the findings provide a mechanistic explanation for the emergence of decoupled slow waves associated with motility impairments of the stomach, offer directions for future experiments and theoretical work, and can potentially aid in the design of new interventional pharmacological and neuromodulation device treatments for addressing gastric motility disorders.


2021 ◽  
Author(s):  
Yuto Momohara ◽  
Curtis L. Neveu ◽  
Hsin-Mei Chen ◽  
Douglas A. Baxter ◽  
John H. Byrne

AbstractDespite numerous studies examining the mechanisms of operant conditioning (OC), the diversity of plasticity loci and their synergism have not been examined sufficiently. In the well-characterized feeding neural circuit of Aplysia, appetitive OC increases neuronal excitability and electrical coupling among several neurons. Here we found OC decreased the intrinsic excitability of B4 and the strength of its inhibitory connection to a key decision-making neuron, B51. The OC-induced changes were specific without affecting the B4-to-B8 inhibitory connection or excitability of another neuron critical for feeding behavior, B8. A conductance-based circuit model indicated certain sites of plasticity mediated the OC phenotype more effectively and that plasticity loci acted synergistically. This synergy was specific in that only certain combinations of loci synergistically enhanced feeding. Taken together, these results suggest modifications of diverse loci work synergistically to mediate OC.Significance StatementThe diversity and synergism of plasticity loci mediating operant conditioning (OC) is poorly understood. Here we found that OC decreased the intrinsic excitability of a critical neuron mediating Aplysia feeding behavior and specifically reduced the strength of one of its inhibitory connections to a key decision-making neuron. A conductance-based computational model indicated that the known plasticity loci showed a surprising level of synergism to mediate the behavioral changes associated with OC. These results highlight the importance of understanding the diversity, specificity and synergy among different types of plasticity that encode memory. Also, because OC in Aplysia is mediated by dopamine (DA), the present study provides insights into specific and synergistic mechanisms of DA-mediated reinforcement of behaviors.


2021 ◽  
Vol 15 ◽  
Author(s):  
Umesh Kumar Verma ◽  
G. Ambika

We present a study on the emergence of a variety of spatio temporal patterns among neurons that are connected in a multiplex framework, with neurons on two layers with different functional couplings. With the Hindmarsh-Rose model for the dynamics of single neurons, we analyze the possible patterns of dynamics in each layer separately and report emergent patterns of activity like in-phase synchronized oscillations and amplitude death (AD) for excitatory coupling and anti-phase mixed-mode oscillations (MMO) in multi-clusters with phase regularities when the connections are inhibitory. When they are multiplexed, with neurons of one layer coupled with excitatory synaptic coupling and neurons of the other layer coupled with inhibitory synaptic coupling, we observe the transfer or selection of interesting patterns of collective behavior between the layers. While the revival of oscillations occurs in the layer with excitatory coupling, the transition from anti-phase to in-phase and vice versa is observed in the other layer with inhibitory synaptic coupling. We also discuss how the selection of these spatio temporal patterns can be controlled by tuning the intralayer or interlayer coupling strengths or increasing the range of non-local coupling. With one layer having electrical coupling while the other synaptic coupling of excitatory(inhibitory)type, we find in-phase(anti-phase) synchronized patterns of activity among neurons in both layers.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 659
Author(s):  
Tamara Egan Benova ◽  
Csilla Viczenczova ◽  
Barbara Szeiffova Bacova ◽  
Jitka Zurmanova ◽  
Vladimir Knezl ◽  
...  

Light pollution disturbs circadian rhythm, and this can also be deleterious to the heart by increased susceptibility to arrhythmias. Herein, we investigated if rats exposed to continuous light had altered myocardial gene transcripts and/or protein expression which affects arrhythmogenesis. We then assessed if Omacor® supplementation benefitted affected rats. Male and female spontaneously hypertensive (SHR) and normotensive Wistar rats (WR) were housed under standard 12 h/12 h light/dark cycles or exposed to 6-weeks continuous 300 lux light for 24 h. Half the rats were then treated with 200 mg/100 g b.w. Omacor®. Continuous light resulted in higher male rat vulnerability to malignant ventricular fibrillation (VF). This was linked with myocardial connexin-43 (Cx43) down-regulation and deteriorated intercellular electrical coupling, due in part to increased pro-inflammatory NF-κB and iNOS transcripts and decreased sarcoplasmic reticulum Ca2+ATPase transcripts. Omacor® treatment increased the electrical threshold to induce the VF linked with amelioration of myocardial Cx43 mRNA and Cx43 protein levels and the suppression of NF-κB and iNOS. This indicates that rat exposure to continuous light results in deleterious cardiac alterations jeopardizing intercellular Cx43 channel-mediated electrical communication, thereby increasing the risk of malignant arrhythmias. The adverse effects were attenuated by treatment with Omacor®, thus supporting its potential benefit and the relevance of monitoring omega-3 index in human populations at risk.


2021 ◽  
Author(s):  
Samet Kocaturk ◽  
Fulva Shah ◽  
Elif Beyza Guven ◽  
James M Tepper ◽  
Maxime Assous

Cholinergic interneurons (CINs) are essential elements of striatal circuits and behaviors. While acetylcholine signaling via muscarinic receptors (mAChRs) have been well studied, more recent data indicate that postsynaptic nicotinic receptors (nAChRs) located on GABAergic interneurons (GINs) are equally critical. One demonstration is that CINs stimulation induces large disynaptic inhibition of SPNs mediated by nAChR activation of striatal GINs. While these circuits are ideally positioned to modulate striatal output activity, the neurons involved are not definitively identified due largely to an incomplete mapping of CINs-GINs interconnections. Here, we show that CINs optogenetic activation evokes an intricate dual mechanism involving co-activation of pre- and postsynaptic mAChRs and nAChRs on four GINs populations. Using multi-optogenetics, we demonstrate the participation of tyrosine hydroxylase-expressing GINs in the disynaptic inhibition of SPNs likely via heterotypic electrical coupling with neurogliaform interneurons. Altogether, our results highlight the importance of CINs in regulating GINs microcircuits via complex synaptic/heterosynaptic mechanisms.


Author(s):  
Mingjun Du ◽  
Yongjun Hou ◽  
Tong Tang ◽  
Lian Tang ◽  
Jialong Wang ◽  
...  

With the rapid development of horizontal drilling technology, the drilling fluid shale shaker (DFSS) features high capacity and high efficiency. Hence, a vibrating mechanism of a three co-rotating rotor system coupled with springs is proposed for designing large-sized and heavy-duty vibrating screens in petroleum drilling engineering. To master synchronization of the vibrating system, the dynamic equations of three corotating rotors coupled with springs are first developed based on Lagrange’s equations. Second, synchronous conditions of the system are derived based on the average method, and its stability criterion is obtained by adopting Hamilton’s principle. Furthermore, the influences of various factors, including positional parameters of three motors, stiffness coefficient of the springs and frequency ratio on synchronization behaviour, are numerically analysed in the steady state. Additionally, the Runge–Kutta algorithm with adaptive control is employed to build an electromagnetic coupling model, and the relationships between the synchronization state of the system and its mechanical-electrical coupling characteristics are investigated. Finally, an experimental prototype is designed to validate the theory and numerical analysis. The research result shows that the in-phase synchronization of three co-rotating rotors coupled with springs is easy to implement with the selection of a sufficiently large stiffness.


Sign in / Sign up

Export Citation Format

Share Document