particle transport
Recently Published Documents


TOTAL DOCUMENTS

2098
(FIVE YEARS 284)

H-INDEX

74
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Shaokang Xu ◽  
Shinya Maeyama ◽  
Tomohiko Watanabe

Abstract The present study reveals that the anomalous tungsten particle transport based on the nonlinear gyrokinetic simulations shares some similarities with that of the linear gyrokinetic study, meanwhile there exist some significant differences. In particular, nonlinear excitation of the linearly stable modes plays a non-negligible role in anomalous tungsten particle transport. The highlighted results are the downshift of the critical density gradient for zero tungsten particle transport and the mod- ification of the poloidal profile of the outward tungsten particle transport, which are both related to the small scale turbulent fluctuations. The former one is due to the outward particle convection produced by the linearly stable modes. The later one is brought by both the linearly stable modes and the large-scale eddies with finite ballooning angle, which flatten the poloidal profile of the particle diffusion and further shift the peak positions of the strongest outward particle transport to the high poloidal angle regions.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 960
Author(s):  
Gun Woo Park ◽  
Gerhard Nägele

Cross-flow membrane ultrafiltration (UF) is used for the enrichment and purification of small colloidal particles and proteins. We explore the influence of different membrane geometries on the particle transport in, and the efficiency of, inside-out cross-flow UF. For this purpose, we generalize the accurate and numerically efficient modified boundary layer approximation (mBLA) method, developed in recent work by us for a hollow cylindrical membrane, to parallel flat sheet geometries with one or two solvent-permeable membrane sheets. Considering a reference dispersion of Brownian hard spheres where accurate expressions for its transport properties are available, the generalized mBLA method is used to analyze how particle transport and global UF process indicators are affected by varying operating parameters and the membrane geometry. We show that global process indicators including the mean permeate flux, the solvent recovery indicator, and the concentration factor are strongly dependent on the membrane geometry. A key finding is that irrespective of the many input parameters characterizing an UF experiment and its membrane geometry, the process indicators are determined by three independent dimensionless variables only. This finding can be very useful in the design, optimization, and scale-up of UF processes.


2021 ◽  
pp. 17-21
Author(s):  
V.V. Gann ◽  
A.V. Gann ◽  
B.V. Borts ◽  
I.M. Karnaukhov ◽  
P.I. Gladkikh ◽  
...  

In this work, mathematical modeling of a complex of processes occurring in a tungsten target under irradiation with high-energy electrons with an energy of 100 MeV: an electromagnetic shower, the production of photo-neutrons, and particle transport along the target, damage from neutrons of the subcritical assembly. It was found that the greatest contribution to the rate of damage formation in a tungsten target give the elastic scattering of high-energy electrons on nuclei.


Author(s):  
Tahoura Samad ◽  
Jacob Witten ◽  
Alan J. Grodzinsky ◽  
Katharina Ribbeck

Author(s):  
Michael McManus ◽  
Francesco Romano ◽  
Gary J Royle ◽  
Hugo Palmans ◽  
Anna Subiel

Abstract Objective: The boundary crossing algorithm available in Geant4 10.07-p01 general purpose Monte Carlo code has been investigated for a 12 MeV and 200 MeV electron source by the application of a Fano cavity test. Approach: Fano conditions were enforced through all simulations whilst varying individual charged particle transport parameters which control particle step size, ionisation and single scattering. Main Results: At 12 MeV, Geant4 was found to return excellent dose consistency within 0.1% even with the default parameter configurations. The 200 MeV case, however, showed significant consistency issues when default physics parameters were employed with deviations from unity of more than 6%. The effect of the inclusion of nuclear interactions was also investigated for the 200 MeV beam and was found to return good consistency for a number of parameter configurations. Significance: The Fano test is a necessary investigation to ensure the consistency of charged particle transport available in Geant4 before detailed detector simulations can be conducted.


Sign in / Sign up

Export Citation Format

Share Document