Ensemble modeling of watershed‐scale hydrologic effects of short‐rotation woody crop production

Author(s):  
Kellie Vache ◽  
Menberu Bitew Meles ◽  
Natalie A Griffiths ◽  
C Rhett Jackson
2011 ◽  
Vol 13 (sup1) ◽  
pp. 102-121 ◽  
Author(s):  
Ronald S. Zalesny ◽  
John A. Stanturf ◽  
Steven R. Evett ◽  
Nabil F. Kandil ◽  
Chris Soriano

2019 ◽  
Vol 15 (2) ◽  
pp. 55-68
Author(s):  
András Polgár ◽  
Zoltán Kovács ◽  
Veronika Elekné Fodor ◽  
András Bidló

Abstract Environmental life cycle assessment (LCA) was developed as a tool for sustainable, decision-supporting environmental management. Applying agricultural sector-LCA in order to achieve both internal (comparative) and external (efficiency enhancing) benefits is a priority. Since the life-cycle assessment of products and processes attracts great interest, applying the method in agriculture is relevant. Our study undertakes a comparative environmental life-cycle assessment (LCA) of local arable crop production technologies used for the main cultivated plants: maize, sunflower, lucerne, cereals, and canola (environmental data in the territorial approach calculated on a 1 ha unit and in the quantitative approach calculated on 1 t of produce). We prepared an environmental inventory of the arable crop production technologies, constructed the life-cycle models, and executed the impact assessment. We also compiled an environmental ranking of technologies. In the impact interpretation, we compared the results with the values of short rotation energy plantations in each impact category. We analysed carbon footprints closely. The obtained results help better assess environmental impacts, climate risks, and climate change as they pertain to arable crop production technologies, which advances the selection of appropriate technologies adjusted to environmental sensitivities.


2020 ◽  
Vol 100 (4) ◽  
pp. 488-502
Author(s):  
Scott X. Chang ◽  
Zheng Shi ◽  
Barb R. Thomas

Forest stand age can affect ecosystem carbon (C) cycling and net ecosystem productivity (NEP). In Canada, establishment of short-rotation plantations on previously agricultural lands has been ongoing, but the effect of stand development on soil respiration (Rs) and NEP in such plantations is poorly understood. These types of data are essential for constraining ecosystem models that simulate C dynamics over the rotation of a plantation. We studied Rs (including autotrophic, Ra, and heterotrophic, Rh) and NEP in 2008 and 2009 in a chronosequence of 5-, 8-, 14-, and 16-yr-old (ages in 2009) hybrid poplar (Populus deltoides × Populus × petrowskyana var. Walker) plantations in northern Alberta. The highest Rs and NEP were generally found in the 14-yr-old stand. Seasonal variations in Rs were similar among the plantations, with most of the variation explained by soil temperature at the 10 cm depth in 2008 with far less explained in 2009, a much drier year. In diurnal measurements, hysteresis was found between soil respiration and soil temperature, with the patterns of hysteresis different among stand ages. Soil respiration in the 14-yr-old plantation had the greatest sensitivity to temperature changes. Stand age did not affect the Rh:Rs ratio, whereas the NEP exhibited strong inter-annual variability. We conclude that stand age was a major factor affecting Rs and NEP, and such effects should be considered in empirical models used to simulate ecosystem C dynamics to evaluate potentials for C sequestration and the C source–sink relationship in short-rotation woody crop systems.


2016 ◽  
Vol 9 (2) ◽  
pp. 492-506 ◽  
Author(s):  
Ronald S. Zalesny ◽  
John A. Stanturf ◽  
Emile S. Gardiner ◽  
Gary S. Bañuelos ◽  
Richard A. Hallett ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Anita Maienza ◽  
Giovanni Mughini ◽  
Luca Salvati ◽  
Anna Benedetti ◽  
Maria Teresa Dell'Abate

The European Union Directive 91/676/EEC, known as Nitrates Directive, has dictated basic agronomic principles regarding the use of animal manure source as well as livestock and waste waters from small food companies. The use of nitrification inhibitors together with animal effluents as organic fertilizers could be beneficial for nutrient recycling, plant productivity, and greenhouse gas emission and could offer economic advantages as alternative to conventional fertilizers especially in the Mediterranean region. The aim of the present study was to investigate differences in plant productivity between bovine effluent treatments with (or without) addition of a nitrification inhibitor (3,4 DMPP) in a short rotation woody crop system. Results of the field experiment carried out in a Mediterranean dry environment indicated that the proposed strategy could improve tree growth with indirect, beneficial effects for agroforestry systems.


2012 ◽  
Vol 224 (1) ◽  
Author(s):  
Ying Ouyang ◽  
Theodor D. Leininger ◽  
Jeff Hatten ◽  
Prem B. Parajuli

1994 ◽  
Vol 24 (1) ◽  
pp. 180-184 ◽  
Author(s):  
David A. Lortz ◽  
David R. Betters ◽  
Lynn L. Wright

Short-rotation woody-crop Populus spp. plantations have the potential to produce large amounts of biomass in short time periods, typically 4–8 years. A production function equation is shown to predict yields for such plantations. The equation is based, in part, on information from biomass production experiments conducted across the United States. These experimental plots are sponsored by the Biofuels Feedstock Development Program of Oak Ridge National Laboratory. The equation uses nine parameters including both cultural practices and climatic and soil site conditions as independent variables. The equation (R2 = 0.86) is accurate and applicable to a wide range of conditions.


Sign in / Sign up

Export Citation Format

Share Document