scholarly journals Assessing the Influence of Summer Organic Fertilization Combined with Nitrogen Inhibitor on a Short Rotation Woody Crop in Mediterranean Environment

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Anita Maienza ◽  
Giovanni Mughini ◽  
Luca Salvati ◽  
Anna Benedetti ◽  
Maria Teresa Dell'Abate

The European Union Directive 91/676/EEC, known as Nitrates Directive, has dictated basic agronomic principles regarding the use of animal manure source as well as livestock and waste waters from small food companies. The use of nitrification inhibitors together with animal effluents as organic fertilizers could be beneficial for nutrient recycling, plant productivity, and greenhouse gas emission and could offer economic advantages as alternative to conventional fertilizers especially in the Mediterranean region. The aim of the present study was to investigate differences in plant productivity between bovine effluent treatments with (or without) addition of a nitrification inhibitor (3,4 DMPP) in a short rotation woody crop system. Results of the field experiment carried out in a Mediterranean dry environment indicated that the proposed strategy could improve tree growth with indirect, beneficial effects for agroforestry systems.

2014 ◽  
Vol 44 (5) ◽  
pp. 422-431 ◽  
Author(s):  
Sylvain Masse ◽  
Pierre P. Marchand ◽  
Michèle Bernier-Cardou

Short-rotation intensive culture (SRIC) of willow (Salix spp.) or hybrid poplar (Populus spp.) is currently at a precommercial stage with a potential to be applied economically across important areas to produce lignocellulosic biomass and environmental services in Canada. A two-round Delphi survey was conducted among 50 experts to assess the future deployment of SRIC in this country. The total area in 10 years (2011 base year) was forecasted as 1330, 4100, and 11 400 ha under pessimistic, realistic, and optimistic scenarios, respectively. The deployment of SRIC in the next decade depends mainly on the development of the demand for SRIC biomass and services, that of production technologies, and the establishment of policies and programs promoting its application. In the short term, research and development (R&D) and policy initiatives should be funded or implemented by various stakeholders to facilitate the deployment of the system. On average, respondents deemed that the potential for long-term (20 years) deployment of SRIC in Canada was good. Some of the conclusions and the methodological approach of this study could apply to short-rotation woody crop systems and to agroforestry systems in Canada and elsewhere.


2001 ◽  
Vol 1 ◽  
pp. 108-113 ◽  
Author(s):  
Dilfuza Egamberdiyeva ◽  
Muhiddin Mamiev ◽  
Svetlana K. Poberejskaya

Application of fertilizers combined with nitrification inhibitors affects soil microbial biomass and activity. The objective of this research was to determine the effects of fertilizer application combined with the nitrification inhibitor potassium oxalate (PO) on soil microbial population and activities in nitrogen-poor soil under cotton cultivation in Uzbekistan. Fertilizer treatments were N as urea, P as ammophos, and K as potassium chloride. The nitrification inhibitor PO was added to urea and ammophos at the rate of 2%. Three treatments—N200P140K60(T1), N200P140 POK60(T2), and N200P140 POK60(T3) mg kg-1soil—were applied for this study. The control (C) was without fertilizer and PO. The populations of oligotrophic bacteria, ammonifying bacteria, nitrifying bacteria, denitrifying bacteria, mineral assimilating bacteria, oligonitrophilic bacteria, and bacteria group Azotobacter were determined by the most probable number method. The treatments T2 and T3 increased the number of oligonitrophilic bacteria and utilization mineral forms of nitrogen on the background of reducing number of ammonifying bacteria. T2 and T3 also decreased the number of nitrifying bacteria, denitrifying bacteria, and net nitrification. In conclusion, our experiments showed that PO combined with mineral fertilizer is one of the most promising compounds for inhibiting nitrification rate, which was reflected in the increased availability and efficiency of fertilizer nitrogen to the cotton plants. PO combined with mineral fertilizer has no negative effects on nitrogen-fixing bacteria Azotobacter and oligo-nitrophilic bacteria.


2010 ◽  
pp. 7-11
Author(s):  
József Antal ◽  
Gábor Grasseli

Both the European and the Hungarian rural areas suffer multi dimensional problems. Beside infrastructural under development the most important difficulty is employment. Unemployment is significant in the rural areas, while other structural characteristics like education, profession, work circumstances and seasonality worsen this unfavourable situation. It can be stated that the challenge with the highest priority in rural and spatialdevelopment is to create jobs and to strengthen local employment. The authors examine the job generating possibilities of energetic biomass of agricultural origin in a structural point of view. The aim is to develop spatial biomass product line models that permanently support the raise of employment by utilizing the possibilities of the European Union support policy and the popularity of this branch.


2012 ◽  
pp. 31-35
Author(s):  
Nándor Csatári

Fuelwood, and wood wastes provide almost half of the renewable energy production of the European Union. Enhancing the use of wood in renewable energy production has more constraint than wind- or solar energy. Forests in the EU member states are sustainably used, they are increasing both in terms of area, and growing stocks. There are possibilities to enhance the fallings and use more fuelwood. Short rotation coppices could fulfill the long term demand for fuelwood; because these plantations surpass the dendromass yield of forests.


2018 ◽  
Vol 98 (3) ◽  
pp. 683-702 ◽  
Author(s):  
B.L. Beres ◽  
R.J. Graf ◽  
R.B. Irvine ◽  
J.T. O’Donovan ◽  
K.N. Harker ◽  
...  

To address knowledge gaps around enhanced efficiency urea fertilizer efficacy for nitrogen (N) management, a study was designed to improve integrated nutrient management systems for western Canadian winter wheat producers. Three factors were included in Experiment 1: (i) urea type [urea, urea + urease inhibitor—Agrotain®; urea + urease and nitrification inhibitor—SuperU®, polymer-coated urea—Environmentally Smart Nitrogen® (ESN®), and urea ammonium nitrate (UAN)], (ii) application method (side-band vs. spring-broadcast vs. 50% side-band: 50% spring-broadcast), and (iii) cultivar (AC Radiant hard red winter wheat vs. CDC Ptarmigan soft white winter wheat). The Agrotain® and CDC Ptarmigan treatments were removed in Experiment 2 to allow for additional application methods: (i) fall side-band, (ii) 50% side-band — 50% late fall broadcast, (iii) 50% side-band — 50% early spring broadcast, (iv) 50% side-band — 50% mid-spring broadcast, and (v) 50% side-band — 50% late spring broadcast. CDC Ptarmigan produced superior grain yield and N utilization over AC Radiant. Grain yield and protein content were influenced by N form and application method. Split applications of N usually provided the maximum yield and protein, particularly with Agrotain® or SuperU®. An exception to the poor fall-application results was the SuperU® treatments, which produced similar yield to the highest-yielding treatments. The results suggest that split applications of N might be most efficient for yield and protein optimization when combined with an enhanced efficiency urea product, particularly with urease or urease + nitrification inhibitors, and if the majority of N is applied in spring.


2020 ◽  
Vol 100 (4) ◽  
pp. 488-502
Author(s):  
Scott X. Chang ◽  
Zheng Shi ◽  
Barb R. Thomas

Forest stand age can affect ecosystem carbon (C) cycling and net ecosystem productivity (NEP). In Canada, establishment of short-rotation plantations on previously agricultural lands has been ongoing, but the effect of stand development on soil respiration (Rs) and NEP in such plantations is poorly understood. These types of data are essential for constraining ecosystem models that simulate C dynamics over the rotation of a plantation. We studied Rs (including autotrophic, Ra, and heterotrophic, Rh) and NEP in 2008 and 2009 in a chronosequence of 5-, 8-, 14-, and 16-yr-old (ages in 2009) hybrid poplar (Populus deltoides × Populus × petrowskyana var. Walker) plantations in northern Alberta. The highest Rs and NEP were generally found in the 14-yr-old stand. Seasonal variations in Rs were similar among the plantations, with most of the variation explained by soil temperature at the 10 cm depth in 2008 with far less explained in 2009, a much drier year. In diurnal measurements, hysteresis was found between soil respiration and soil temperature, with the patterns of hysteresis different among stand ages. Soil respiration in the 14-yr-old plantation had the greatest sensitivity to temperature changes. Stand age did not affect the Rh:Rs ratio, whereas the NEP exhibited strong inter-annual variability. We conclude that stand age was a major factor affecting Rs and NEP, and such effects should be considered in empirical models used to simulate ecosystem C dynamics to evaluate potentials for C sequestration and the C source–sink relationship in short-rotation woody crop systems.


Sign in / Sign up

Export Citation Format

Share Document