Noncovalent functionalization of carbon nanotubes using branched random copolymer for improvement of thermal conductivity and mechanical properties of epoxy thermosets

2018 ◽  
Vol 67 (8) ◽  
pp. 1128-1136 ◽  
Author(s):  
Yuyao Tang ◽  
Fangqiao Zhao ◽  
Xiaoma Fei ◽  
Wei Wei ◽  
Xiaojie Li ◽  
...  
2021 ◽  
Author(s):  
MIA CARROLA ◽  
AMIR ASADI

Though a revolutionary process, additive manufacturing (AM) has left more to be desired from printed parts, specifically, improved interlayer strength and minimal defects such as porosity. To overcome these common issues, nanocomposites have become one of the most popular materials used in AM, with various nanoparticles used to achieve a variety of characteristics. The use of these technologies together allows for both to synergistically enhance the final printed parts by improving the process and products simultaneously. Here, we introduce a novel, scalable technique to coat ABS pellets with cellulose nanocrystal (CNC) bonded carbon nanotubes (CNT), to improve the adhesion between layers as well as the mechanical properties of printed parts. An aqueous suspension of CNT-CNC is used to coat ABS pellets before they are dried and extruded into filament for printing. The filament produced using this manufacturing method showed an increase in tensile and interlayer strength as well as improved thermal conductivity. This process uses water as solvent and pristine nanoparticles without the need for any functionalization or surfactants, promoting its scalability. This process has the potential to be used with various polymers and nanoparticles, which allows the materials to be specifically tailored to the end application, (i.e. strength, conductivity, antibacterial, etc.). These nanocomposite filaments have the potential to revolutionize the way that additive manufacturing is utilized in a variety of industries.


Nano Letters ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 232-236 ◽  
Author(s):  
Cyrille Richard ◽  
Bich-Thuy Doan ◽  
Jean-Claude Beloeil ◽  
Michel Bessodes ◽  
Éva Tóth ◽  
...  

2008 ◽  
Vol 32 ◽  
pp. 9-12
Author(s):  
Shirley Zhiqi Shen ◽  
Stuart Bateman ◽  
Qiang Yuan ◽  
Mel Dell'Olio ◽  
Januar Gotama ◽  
...  

This paper presents the effects of incorporating carbon nanotubes (CNT) into nylon 6 on thermal properties and fire performance of woven glass reinforced CNT/nylon 6 nanocomposite laminates. Incorporation of CNT in nylon 6 improved the thermal stabilities, thermal conductivity and fire performance of laminates without compromising their mechanical properties. The thermal conductivity of laminates with 2 wt% CNT increased up to 42% compared to that without CNT. The ignition time and peak HRR time was delayed approx. 31% and 118%, respectively, in laminates with 4 wt% CNT in nylon 6 over that without CNT.


Sign in / Sign up

Export Citation Format

Share Document