Mapping of biomechanical properties of cell lines on altered matrix stiffness using atomic force microscopy

2020 ◽  
Vol 19 (5) ◽  
pp. 1523-1536 ◽  
Author(s):  
Jyoti Wala ◽  
Soumen Das
2009 ◽  
Vol 72 (4/5) ◽  
pp. 251-259 ◽  
Author(s):  
Raphael Imer ◽  
Terunobu Akiyama ◽  
Nico F. de Rooij ◽  
Martin Stolz ◽  
Ueli Aebi ◽  
...  

Open Biology ◽  
2014 ◽  
Vol 4 (5) ◽  
pp. 140046 ◽  
Author(s):  
Jan Rother ◽  
Helen Nöding ◽  
Ingo Mey ◽  
Andreas Janshoff

Mechanical phenotyping of cells by atomic force microscopy (AFM) was proposed as a novel tool in cancer cell research as cancer cells undergo massive structural changes, comprising remodelling of the cytoskeleton and changes of their adhesive properties. In this work, we focused on the mechanical properties of human breast cell lines with different metastatic potential by AFM-based microrheology experiments. Using this technique, we are not only able to quantify the mechanical properties of living cells in the context of malignancy, but we also obtain a descriptor, namely the loss tangent, which provides model-independent information about the metastatic potential of the cell line. Including also other cell lines from different organs shows that the loss tangent ( G″ / G′ ) increases generally with the metastatic potential from MCF-10A representing benign cells to highly malignant MDA-MB-231 cells.


Author(s):  
Rebecca E. Wilusz ◽  
Eric M. Darling ◽  
Michael P. Bolognesi ◽  
Stefan Zauscher ◽  
Farshid Guilak

Articular cartilage is the connective tissue that lines the articulating surfaces of diarthrodial joints, providing a low-friction, load-bearing surface during joint motion. Articular cartilage comprises of a single cell type, the chondrocyte, embedded within an extensive extracellular matrix (ECM). Each chondrocyte is surrounded by a narrow region called the pericellular matrix (PCM) that is distinct from the ECM in both its biochemical composition [1] and biomechanical properties [2]. While multiple techniques have been used to measure the mechanical properties of the PCM, including micropipette aspiration of isolated chondrons [2], these studies required mechanical or enzymatic extraction of the chondrocyte and surrounding PCM (i.e., the “chondron” [1]) from the cartilage, and the influence of this isolation process on PCM properties is unknown. Atomic force microscopy (AFM) provides a high resolution form of nano- and microindentation approaches that can be used to measure local mechanical properties in situ [3,4]. The objective of this study was to use AFM to quantify the biomechanical properties of the ECM and PCM of human articular cartilage in situ.


Biology ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 468
Author(s):  
Maria Maares ◽  
Claudia Keil ◽  
Leif Löher ◽  
Andreas Weber ◽  
Amsatou Andorfer-Sarr ◽  
...  

Monitoring biomechanics of cells or tissue biopsies employing atomic force microscopy (AFM) offers great potential to identify diagnostic biomarkers for diseases, such as colorectal cancer (CRC). Data on the mechanical properties of CRC cells, however, are still scarce. There is strong evidence that the individual zinc status is related to CRC risk. Thus, this study investigates the impact of differing zinc supply on the mechanical response of the in vitro CRC cell lines HT-29 and HT-29-MTX during their early proliferation (24–96 h) by measuring elastic modulus, relaxation behavior, and adhesion factors using AFM. The differing zinc supply severely altered the proliferation of these cells and markedly affected their mechanical properties. Accordingly, zinc deficiency led to softer cells, quantitatively described by 20–30% lower Young’s modulus, which was also reflected by relevant changes in adhesion and rupture event distribution compared to those measured for the respective zinc-adequate cultured cells. These results demonstrate that the nutritional zinc supply severely affects the nanomechanical response of CRC cell lines and highlights the relevance of monitoring the zinc content of cancerous cells or biopsies when studying their biomechanics with AFM in the future.


2016 ◽  
Vol 235 (4) ◽  
pp. 233-240 ◽  
Author(s):  
Franziska Vielmuth ◽  
Ricarda G. Schumann ◽  
Volker Spindler ◽  
Armin Wolf ◽  
Renate Scheler ◽  
...  

Purpose: To assess the stiffness of the human internal limiting membrane (ILM) and evaluate potential changes of mechanical properties following intravitreal ocriplasmin injection for vitreomacular traction. Methods: This is an interventional comparative case series of 12 surgically excised ILM specimens consecutively obtained from 9 eyes of 9 patients after unsuccessful pharmacologic vitreolysis with ocriplasmin. During the same time period, 16 specimens from 13 other eyes without ocriplasmin treatment were harvested during vitrectomy and served as controls. All patients presented with macular holes or vitreomacular traction and underwent vitrectomy with ILM peeling either with or without brilliant blue (BB) staining. All specimens were analyzed using atomic force microscopy with scan regions of 25 × 25 μm. In all specimens, both the retinal side and vitreal side of the ILM were analyzed. Results: Atomic force microscopy revealed no significant differences in elasticity of ILM specimens removed from eyes with or without ocriplasmin treatment. Undulated areas of the retinal side presented stiffer than the vitreal side of the ILM. Topographical mapping of both the vitreal and retinal side of the ILM showed no apparent alteration of the morphology in ocriplasmin-treated eyes compared to untreated eyes. Staining with BB resulted in an increase of tissue stiffness. Conclusions: Intravitreal injection of ocriplasmin does not change biomechanical properties of the human ILM. There is no evidence of a potential enzymatic effect of ocriplasmin interfering with the stiffness of this basement membrane.


2010 ◽  
Vol 98 (12) ◽  
pp. 2848-2856 ◽  
Author(s):  
Eric M. Darling ◽  
Rebecca E. Wilusz ◽  
Michael P. Bolognesi ◽  
Stefan Zauscher ◽  
Farshid Guilak

Sign in / Sign up

Export Citation Format

Share Document