Exact Solution of the Navier–Stokes Equation Describing Nonisothermal Large-Scale Flows in a Rotating Layer of Liquid with Free Upper Surface

2018 ◽  
Vol 230 (5) ◽  
pp. 813-817
Author(s):  
K. G. Shvarts
2021 ◽  
Author(s):  
Peter Rutkevich ◽  
Georgy Golitsyn ◽  
Anatoly Tur

<p>Large-scale instability in incompressible fluid driven by the so called Anisotropic Kinetic Alpha (AKA) effect satisfying the incompressible Navier-Stokes equation with Coriolis force is considered. The external force is periodic; this allows applying an unusual for turbulence calculations mathematical method developed by Frisch et al [1]. The method provides the orders for nonlinear equations and obtaining large scale equations from the corresponding secular relations that appear at different orders of expansions. This method allows obtaining not only corrections to the basic solutions of the linear problem but also provides the large-scale solution of the nonlinear equations with the amplitude exceeding that of the basic solution. The fluid velocity is obtained by numerical integration of the large-scale equations. The solution without the Coriolis force leads to constant velocities at the steady-state, which agrees with the full solution of the Navier-Stokes equation reported previously. The time-invariant solution contains three families of solutions, however, only one of these families contains stable solutions. The final values of the steady-state fluid velocity are determined by the initial conditions. After account of the Coriolis force the solutions become periodic in time and the family of solutions collapses to a unique solution. On the other hand, even with the Coriolis force the fluid motion remains two-dimensional in space and depends on a single spatial variable. The latter fact limits the scope of the AKA method to applications with pronounced 2D nature. In application to 3D models the method must be used with caution.</p><p>[1] U. Frisch, Z.S. She and P. L. Sulem, “Large-Scale Flow Driven by the Anisotropic Kinetic Alpha Effect,” Physica D, Vol. 28, No. 3, 1987, pp. 382-392.</p>


1986 ◽  
Vol 163 ◽  
pp. 141-147 ◽  
Author(s):  
J. M. Dorrepaal

A similarity solution is found which describes the flow impinging on a flat wall at an arbitrary angle of incidence. The technique is similar to a method used by Jeffery (1915) and discussed more recently by Peregrine (1981).


2017 ◽  
Vol 13 (2) ◽  
pp. 7123-7134 ◽  
Author(s):  
A. S. J Al-Saif ◽  
Takia Ahmed J Al-Griffi

We have proposed in this  research a new scheme to find analytical  approximating solutions for Navier-Stokes equation  of  one  dimension. The  new  methodology depends on combining  Adomian  decomposition  and Homotopy perturbation methods  with the splitting time scheme for differential operators . The new methodology is applied on two problems of  the test: The first has an exact solution  while  the other one has no  exact solution. The numerical results we  obtained  from solutions of two problems, have good convergent  and high  accuracy   in comparison with the two traditional Adomian  decomposition  and Homotopy  perturbationmethods . 


2014 ◽  
Vol 3 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Gunvant A. Birajdar

AbstractIn this paper we find the solution of time fractional discrete Navier-Stokes equation using Adomian decomposition method. Here we discretize the space domain. The graphical representation of solution given by using Matlab software, and it compared with exact solution for alpha = 1.


Sign in / Sign up

Export Citation Format

Share Document