scholarly journals Large-scale oceanic currents as shallow-water asymptotic solutions of the Navier-Stokes equation in rotating spherical coordinates

Author(s):  
A. Constantin ◽  
R.S. Johnson
2021 ◽  
Author(s):  
Peter Rutkevich ◽  
Georgy Golitsyn ◽  
Anatoly Tur

<p>Large-scale instability in incompressible fluid driven by the so called Anisotropic Kinetic Alpha (AKA) effect satisfying the incompressible Navier-Stokes equation with Coriolis force is considered. The external force is periodic; this allows applying an unusual for turbulence calculations mathematical method developed by Frisch et al [1]. The method provides the orders for nonlinear equations and obtaining large scale equations from the corresponding secular relations that appear at different orders of expansions. This method allows obtaining not only corrections to the basic solutions of the linear problem but also provides the large-scale solution of the nonlinear equations with the amplitude exceeding that of the basic solution. The fluid velocity is obtained by numerical integration of the large-scale equations. The solution without the Coriolis force leads to constant velocities at the steady-state, which agrees with the full solution of the Navier-Stokes equation reported previously. The time-invariant solution contains three families of solutions, however, only one of these families contains stable solutions. The final values of the steady-state fluid velocity are determined by the initial conditions. After account of the Coriolis force the solutions become periodic in time and the family of solutions collapses to a unique solution. On the other hand, even with the Coriolis force the fluid motion remains two-dimensional in space and depends on a single spatial variable. The latter fact limits the scope of the AKA method to applications with pronounced 2D nature. In application to 3D models the method must be used with caution.</p><p>[1] U. Frisch, Z.S. She and P. L. Sulem, “Large-Scale Flow Driven by the Anisotropic Kinetic Alpha Effect,” Physica D, Vol. 28, No. 3, 1987, pp. 382-392.</p>


2017 ◽  
Vol 822 ◽  
pp. 512-560
Author(s):  
Elias Gravanis ◽  
Evangelos Akylas

Isotropic turbulence is typically studied numerically through direct numerical simulations (DNS). The DNS flows are described by the Navier–Stokes equation in a ‘box’, defined through periodic boundary conditions. Ideal isotropic turbulence lives in infinite space. The DNS flows live in a compact space and they are not isotropic in their large scales. Hence, the investigation of important phenomena of isotropic turbulence, such as anomalous scaling, through DNS is affected by large-scale effects in the currently available Reynolds numbers. In this work, we put isotropic turbulence – or better, the associated formal theory – in a ‘box’, by imposing periodicity at the level of the correlation functions. This is an attempt to offer a framework where one may investigate isotropic theories/models through the data of DNS in a manner as consistent with them as possible. We work at the lowest level of the hierarchy, which involves the two-point correlation functions and the Karman–Howarth equation. Periodicity immediately gives us the discrete wavenumber space of the theory. The wavenumbers start from 1.835, 2.896, 3.923, and progressively approach integer values, in an interesting correspondence with the DNS wavenumber shells. Unlike the Navier–Stokes equation, infinitely smooth periodicity is obstructed in this theory, a fact expressed by a sequence of relations obeyed by the normal modes of the Karman–Howarth equation at the endpoints of a unit period interval. Similar relations are imparted to the two-point functions under the condition that the energy spectrum and energy transfer function are realizable. Hence, these relations are necessary conditions for realizability in this theory. Naturally constructed closure schemes for the Karman–Howarth equation do not conform to such relations, thereby destroying realizability. A closure can be made to conform to a finite number of them by adding corrective terms, in a procedure that possesses certain analogies with the renormalization of quantum field theory. Perhaps the most important one is that we can let the spectrum be unphysical (through sign-changing oscillations of decreasing amplitude) for the infinitely large wavenumbers, as long as we can controllably extend the regime where the spectrum remains physical, deep enough in the dissipation subrange so as to be realistically adequate. Indeed, we show that one or two such ‘regularity relations’ are needed at most for comparisons of the predictions of the theory with the current resolution level results of the DNS. For the implementation of our arguments, we use a simple closure scheme previously proposed by Oberlack and Peters. The applicability of our ideas to more complex closures is also discussed.


1998 ◽  
Vol 115 (1) ◽  
pp. 18-24 ◽  
Author(s):  
G.W. Wei ◽  
D.S. Zhang ◽  
S.C. Althorpe ◽  
D.J. Kouri ◽  
D.K. Hoffman

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 288
Author(s):  
Alexei Kushner ◽  
Valentin Lychagin

The first analysis of media with internal structure were done by the Cosserat brothers. Birkhoff noted that the classical Navier–Stokes equation does not fully describe the motion of water. In this article, we propose an approach to the dynamics of media formed by chiral, planar and rigid molecules and propose some kind of Navier–Stokes equations for their description. Examples of such media are water, ozone, carbon dioxide and hydrogen cyanide.


1973 ◽  
Vol 59 (2) ◽  
pp. 391-396 ◽  
Author(s):  
N. C. Freeman ◽  
S. Kumar

It is shown that, for a spherically symmetric expansion of a gas into a low pressure, the shock wave with area change region discussed earlier (Freeman & Kumar 1972) can be further divided into two parts. For the Navier–Stokes equation, these are a region in which the asymptotic zero-pressure behaviour predicted by Ladyzhenskii is achieved followed further downstream by a transition to subsonic-type flow. The distance of this final region downstream is of order (pressure)−2/3 × (Reynolds number)−1/3.


Sign in / Sign up

Export Citation Format

Share Document