scholarly journals Co-evolution of the bacterial pheromone ComS and sensor ComR fine-tunes natural transformation in streptococci

2021 ◽  
pp. 101346
Author(s):  
Laura Ledesma-García ◽  
Imke Ensinck ◽  
Denis Dereinne ◽  
Felipe Viela ◽  
Johann Mignolet ◽  
...  
mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Peter Jorth ◽  
Marvin Whiteley

ABSTRACTNatural transformation by competent bacteria is a primary means of horizontal gene transfer; however, evidence that competence drives bacterial diversity and evolution has remained elusive. To test this theory, we used a retrospective comparative genomic approach to analyze the evolutionary history ofAggregatibacter actinomycetemcomitans, a bacterial species with both competent and noncompetent sister strains. Through comparative genomic analyses, we reveal that competence is evolutionarily linked to genomic diversity and speciation. Competence loss occurs frequently during evolution and is followed by the loss of clustered regularly interspaced short palindromic repeats (CRISPRs), bacterial adaptive immune systems that protect against parasitic DNA. Relative to noncompetent strains, competent bacteria have larger genomes containing multiple rearrangements. In contrast, noncompetent bacterial genomes are extremely stable but paradoxically susceptible to infective DNA elements, which contribute to noncompetent strain genetic diversity. Moreover, incomplete noncompetent strain CRISPR immune systems are enriched for self-targeting elements, which suggests that the CRISPRs have been co-opted for bacterial gene regulation, similar to eukaryotic microRNAs derived from the antiviral RNA interference pathway.IMPORTANCEThe human microbiome is rich with thousands of diverse bacterial species. One mechanism driving this diversity is horizontal gene transfer by natural transformation, whereby naturally competent bacteria take up environmental DNA and incorporate new genes into their genomes. Competence is theorized to accelerate evolution; however, attempts to test this theory have proved difficult. Through genetic analyses of the human periodontal pathogenAggregatibacter actinomycetemcomitans, we have discovered an evolutionary connection between competence systems promoting gene acquisition and CRISPRs (clustered regularly interspaced short palindromic repeats), adaptive immune systems that protect bacteria against genetic parasites. We show that competentA. actinomycetemcomitansstrains have numerous redundant CRISPR immune systems, while noncompetent bacteria have lost their CRISPR immune systems because of inactivating mutations. Together, the evolutionary data linking the evolution of competence and CRISPRs reveals unique mechanisms promoting genetic heterogeneity and the rise of new bacterial species, providing insight into complex mechanisms underlying bacterial diversity in the human body.


2016 ◽  
Vol 60 (8) ◽  
pp. 4920-4929 ◽  
Author(s):  
German Matias Traglia ◽  
Brettni Quinn ◽  
Sareda T. J. Schramm ◽  
Alfonso Soler-Bistue ◽  
Maria Soledad Ramirez

ABSTRACTThe increasing frequency of bacteria showing antimicrobial resistance (AMR) raises the menace of entering into a postantibiotic era. Horizontal gene transfer (HGT) is one of the prime reasons for AMR acquisition.Acinetobacter baumanniiis a nosocomial pathogen with outstanding abilities to survive in the hospital environment and to acquire resistance determinants. Its capacity to incorporate exogenous DNA is a major source of AMR genes; however, few studies have addressed this subject. The transformation machinery as well as the factors that induce natural competence inA. baumanniiare unknown. In this study, we demonstrate that naturally competent strain A118 increases its natural transformation frequency upon the addition of Ca2+or albumin. We show thatcomEAandpilQare involved in this process since their expression levels are increased upon the addition of these compounds. An unspecific protein, like casein, does not reproduce this effect, showing that albumin's effect is specific. Our work describes the first specific inducers of natural competence inA. baumannii. Overall, our results suggest that the main protein in blood enhances HGT inA. baumannii, contributing to the increase of AMR in this threatening human pathogen.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0182139 ◽  
Author(s):  
Colleen G. Leong ◽  
Rebecca A. Bloomfield ◽  
Caroline A. Boyd ◽  
Amber J. Dornbusch ◽  
Leah Lieber ◽  
...  

2009 ◽  
Vol 191 (7) ◽  
pp. 2296-2306 ◽  
Author(s):  
Esther J. Gaasbeek ◽  
Jaap A. Wagenaar ◽  
Magalie R. Guilhabert ◽  
Marc M. S. M. Wösten ◽  
Jos P. M. van Putten ◽  
...  

ABSTRACT The species Campylobacter jejuni is considered naturally competent for DNA uptake and displays strong genetic diversity. Nevertheless, nonnaturally transformable strains and several relatively stable clonal lineages exist. In the present study, the molecular mechanism responsible for the nonnatural transformability of a subset of C. jejuni strains was investigated. Comparative genome hybridization indicated that C. jejuni Mu-like prophage integrated element 1 (CJIE1) was more abundant in nonnaturally transformable C. jejuni strains than in naturally transformable strains. Analysis of CJIE1 indicated the presence of dns (CJE0256), which is annotated as a gene encoding an extracellular DNase. DNase assays using a defined dns mutant and a dns-negative strain expressing Dns from a plasmid indicated that Dns is an endogenous DNase. The DNA-hydrolyzing activity directly correlated with the natural transformability of the knockout mutant and the dns-negative strain expressing Dns from a plasmid. Analysis of a broader set of strains indicated that the majority of nonnaturally transformable strains expressed DNase activity, while all naturally competent strains lacked this activity. The inhibition of natural transformation in C. jejuni via endogenous DNase activity may contribute to the formation of stable lineages in the C. jejuni population.


Author(s):  
Māris Laiviņš ◽  
Agnese Priede ◽  
Dārta Kaupe ◽  
Andis Lazdiņš

Abstract The succession of semi-natural xeric calcareous grassland plant communities toward deciduous forest communities is poorly studied in Latvia. There is insufficient knowledge on the natural transformation of dry calcareous grasslands of Festuco-Brometea into thermophilous quasi-climax oak forest communities of Quercetea pubescentis that are very rare in Latvia. In this paper, a geobotanical study is presented that included studies of soils, tree age, spatial pattern of trees, vegetation composition of different succession stages, and analysis of environmental factors. The study was conducted in the Abava Valley, West Latvia, an area that is unique with species-rich xeric calcareous Festuco-Brometea grasslands, thermophilous oak forests dominated by Quercus robur, and intermediate secondary succession stages with young to medium-aged Juniperus communis and Pinus sylvestris formations.


protocols.io ◽  
2018 ◽  
Author(s):  
Franziska M ◽  
Memduha Muratoglu ◽  
Jana Jung

Sign in / Sign up

Export Citation Format

Share Document