Numerical Short-Term Solar Activity Forecasting

2017 ◽  
Vol 13 (S335) ◽  
pp. 243-249 ◽  
Author(s):  
Huaning Wang ◽  
Yihua Yan ◽  
Han He ◽  
Xin Huang ◽  
Xinghua Dai ◽  
...  

AbstractIt is well known that the energy for solar eruptions comes from magnetic fields in solar active regions. Magnetic energy storage and dissipation are regarded as important physical processes in the solar corona. With incomplete theoretical modeling for eruptions in the solar atmosphere, activity forecasting is mainly supported with statistical models. Solar observations with high temporal and spatial resolution continuously from space well describe the evolution of activities in the solar atmosphere, and combined with three dimensional reconstruction of solar magnetic fields, makes numerical short-term (within hours to days) solar activity forecasting possible. In the current report, we propose the erupting frequency and main attack direction of solar eruptions as new forecasts and present the prospects for numerical short-term solar activity forecasting based on the magnetic topological framework in solar active regions.

1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


2021 ◽  
Vol 922 (1) ◽  
pp. 46
Author(s):  
Mausumi Dikpati ◽  
Aimee A. Norton ◽  
Scott W. McIntosh ◽  
Peter A. Gilman

Abstract We explore the fundamental physics of narrow toroidal rings during their nonlinear magnetohydrodynamic evolution at tachocline depths. Using a shallow-water model, we simulate the nonlinear evolution of spot-producing toroidal rings of 6° latitudinal width and a peak field of 15 kG. We find that the rings split; the split time depends on the latitude of each ring. Ring splitting occurs fastest, within a few weeks, at latitudes 20°–25°. Rossby waves work as perturbations to drive the instability of spot-producing toroidal rings; the ring split is caused by the “mixed stress” or cross-correlations of perturbation velocities and magnetic fields, which carry magnetic energy and flux from the ring peak to its shoulders, leading to the ring split. The two split rings migrate away from each other, the high-latitude counterpart slipping poleward faster due to migrating mixed stress and magnetic curvature stress. Broader toroidal bands do not split. Much stronger rings, despite being narrow, do not split due to rigidity from stronger magnetic fields within the ring. Magnetogram analysis indicates the emergence of active regions sometimes at the same longitudes but separated in latitude by 20° or more, which could be evidence of active regions emerging from split rings, which consistently contribute to observed high-latitude excursions of butterfly wings during the ascending, peak, and descending phases of a solar cycle. Observational studies in the future can determine how often new spots are found at higher latitudes than their lower-latitude counterparts and how the combinations influence solar eruptions and space weather events.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


2012 ◽  
Vol 8 (S294) ◽  
pp. 13-24
Author(s):  
Hongqi Zhang

AbstractThe helicity is important to present the basic topological configuration of magnetic field in solar atmosphere. The distribution of magnetic helicity in solar atmosphere is presented by means of the observational (vector) magnetograms. As the kinetic helicity in the solar subatmosphere can be inferred from the velocity field based on the technique of the helioseismology and used to compare with the magnetic helicity in the solar atmosphere, the observational helicities provide the important chance for the confirmation on the generation of magnetic fields in the subatmosphere and solar dynamo models also. In this paper, we present the observational magnetic and kinetic helicity in solar active regions and corresponding questions, except the relationship with solar eruptive phenomena.


1968 ◽  
Vol 35 ◽  
pp. 318-325 ◽  
Author(s):  
M. J. Martres ◽  
R. Michard ◽  
I. Soru-Iscovici ◽  
T. Tsap

From the material gathered during the ‘Cooperative Study of Solar Active Regions’, we studied the flare locations in AR magnetic structure, and flare relations to changes in the magnetic fields and spot configurations. Besides a confirmation of previous results, we find that flares are often associated with two features of the spot configuration evolving in opposite senses, one growing, the other declining.


Sign in / Sign up

Export Citation Format

Share Document