scholarly journals Combining Taguchi method and DEAR method for multi-objective optimization of grinding process

2021 ◽  
Vol 309 ◽  
pp. 01220
Author(s):  
Do Duc Trung ◽  
Nguyen Huu Quang ◽  
Dang Quoc Cuong ◽  
Nguyen Hong Linh ◽  
Nguyen Van. Tuan ◽  
...  

In this paper, a study on multi-objective optimization of the cylindrical grinding process is presented. The experimental material used in this study is X12M steel. The two output parameters of the grinding process considered in this study are surface roughness and material removal rate (MRR). The cutting mode parameters including cutting speed, feed rate, and cutting depth have been selected as input parameters of the experimental process. Experimental matrix by Taguchi method has been used to design a matrix with 27 experiments. Analysis of experimental results by Pareto chart has determined the effect of input parameters on output parameters. The Data Envelopment Analysis-based Ranking (DEAR) method has been applied to determine the values of input parameters to simultaneously ensure the two criteria of minimum surface roughness and maximum MRR. Finally, the development direction for further studies has also been recommended in this study.

2021 ◽  
Vol 309 ◽  
pp. 01092
Author(s):  
Do Duc Trung ◽  
Nguyen Huu Quang ◽  
Pham Duc Lam ◽  
Nguyen Hong Linh ◽  
Le Quang Lam ◽  
...  

Abstract. In this article, a study on multi-objective optimization of the milling process is presented. CNC milling machine, cutting tool as TiAlN, experimental material as SCM400 steel and coolant as Caltex Aquatex 3180 oil have been used in the experiment. The objective of this study is to simultaneously ensure the minimum surface roughness and the maximum material removal rate (MRR). Taguchi method has been applied to design an experimental matrix with five input parameters, including coolant flow, coolant pressure, cutting velocity, feed rate, and cutting depth. Analysis of experimental results by Pareto chart has determined the effect of input parameters on output parameters. Moora method has been applied to determine the values of input parameters to simultaneously ensure the two criteria as mentioned above. Finally, the direction for further research has also been recommended in this study


2021 ◽  
Vol 309 ◽  
pp. 01010
Author(s):  
Do Duc Trung ◽  
Nguyen Huu Quang ◽  
Tran Quoc Hoang ◽  
Cao The Anh ◽  
Nguyen Hong Linh ◽  
...  

In this article, a multi-objective optimization of turning process study is presented. Two output parameters of the turning process taken into consideration are surface roughness and Material Removal Rate (MRR). Taguchi method has been applied to design the experimental matrix with four input parameters including nose radius, cutting velocity, feed rate and cutting depth. Copras method has been employed to solve the multi-objective optimization problem. Finally, the optimal values of the input parameters have been determined to simultaneously ensure the two criteria of the minimum surface roughness and the maximum MRR.


2021 ◽  
Vol 15 ◽  
pp. 1-16
Author(s):  
Do Duc Trung

For all machining cutting methods, surface roughness is a parameter that greatly affects the working ability and life of machine elements. Cutting force is a parameter that not only affects the quality of the machining surface but also affects the durability of cutter and the level of energy consumed during machining. Besides, material removal rate (MRR) is a parameter that reflects machining productivity. Workpiece surface machining with small surface roughness, small cutting force and large MRR is desirable of most machining methods. This article presents a study of multi-objective optimization of milling process using a face milling cutter. The experimental material used in this study is SKD11 steel. Taguchi method has been applied to design an orthogonal experimental matrix with 27 experiments (L27). In which, five parameters have been selected as the input parameters of the experimental process including insert material, tool nose radius, cutting speed, feed rate and cutting depth. Reference Ideal Method (RIM) is applied to determine the value of input parameters to ensure minimum surface roughness, minimum cutting force and maximum MRR. Influence of the input parameters on output parameters is also discussed in this study.


2021 ◽  
Vol 11 (5) ◽  
pp. 7551-7557
Author(s):  
N. V. Cuong ◽  
N. L. Khanh

SCM440 steel is a commonly used material for making plastic injection molds and components such as gears, transmission shafts, rolling pins, etc. Surface roughness has a direct influence on the workability and durability of the parts and/or components, while the Material Removal Rate (MRR) is a parameter that is used to evaluate the productivity of the machining process. Furnished products with small surface roughness and large MRR is the desired result by all milling processes. In this paper, the determination of the values of input parameters is studied in order to ensure that during the process of milling SCM440 steel, it will have the smallest surface roughness and the largest MRR. There are five parameters that are required to be determined, namely the cutting insert material, the tool nose radius, the cutting speed, the feed rate, and the cutting depth. The Taguchi method was applied to design the experimental matrix with a total of 27 experiments. Result analysis determined the influence of the input parameters on surface roughness and MRR. The Data Envelopment Analysis-based Ranking (DEAR) method was applied to determine the optimal value of the input parameters, which were used to conduct the milling experiments to re-evaluate their suitability.


Author(s):  
Do Duc Trung

This study presentes a combination method of several optimization techniques and Taguchi method to solve the multi-objective optimization problem for surface grinding process of SKD11 steel. The optimization techniques that were used in this study were Multi-Objective Optimization on basis of Ratio Analysis (MOORA) and Complex Proportional Assessment (COPRAS). In surface grinding process, two parameters that were chosen as the evaluation creterias were surface roughness (Ra) and material removal rate (MRR). The orthogonal Taguchi L16 matrix was chosen to design the experimental matrix with two input parameters namely workpiece velocity and depth of cut.  The two optimization techniques that mentioned above were applied to solve the multi-objective optimization problem in the grinding process. Using two above techniques, the optimized results of the cutting parameters were the same. The optimal workpiece velocity and cutting depth were 20 m/min and 0.02 mm. Corresponding to these optimal values of the workpiece velocity and cutting depth, the surface roughness and material removal rate were 1.16 µm and 86.67 mm3/s. These proposed techniques and method can be used to improve the quality and effectiveness of grinding processes by reducing the surface roughness and increasing the material removal rate.


Author(s):  
Do Duc Trung ◽  
Nhu-Tung Nguyen ◽  
Dung Hoang Tien ◽  
Ha Le Dang

In this study, the mutil-objective optimization was applied for the surface grinding process of SAE420 steel. The aluminum oxide grinding wheels that were grooved by 15 grooves, 18 grooves, and 20 grooves were used in the experimental process. The Taguchi method was applied to design the experimental matrix. Four input parameters that were chosen for each experiment were the number of grooves in cylinder surface of grinding wheel, workpiece velocity, feed rate, and cutting depth. Four output parameters that were measured for each experimental were the machining surface roughness, the system vibrations in the three directions (X, Y, Z). The DEAR technique was applied to determine the values of the input parameters to obtaine the minimum values of machining surface roughness and vibrations in three directions. By using this technique, the optimum values of grinding wheel groove number, workpiece velocity, feed-rate, cutting depth were 18 grooves, 15 m/min, 2 mm/stroke, and 0.005 mm, respectively. The verified experimental was performed by using the optimum values of input parameters. The validation results of surface roughness and vibrations in X, Y, Z directions were 0.826 (µm), 0.531 (µm), 0.549 (µm), and 0. 646 (µm), respectively. These results were great improved in comparing to the normal experimental results. Taguchi method and DEAR technique can be applied to improve the quality of grinding surface and reduce the vibrations of the technology system to restrain the increasing of the cutting forces in the grinding process. Finally, the research direction was also proposed in this study


Sign in / Sign up

Export Citation Format

Share Document