material removal
Recently Published Documents


TOTAL DOCUMENTS

3512
(FIVE YEARS 973)

H-INDEX

67
(FIVE YEARS 11)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 636
Author(s):  
Zongxia Fu ◽  
Fan Chen ◽  
Wenbo Bie ◽  
Bo Zhao ◽  
Xiaobo Wang

This study aimed to explore the evolution of surface properties of nanocomposite ceramics during ultrasonic vibration-assisted electrolytic in-process dressing (UVA-ELID) grinding. First, the trajectory of the grain was analyzed, and the motion was simulated using MATLAB to demonstrate the mechanism of UVA-ELID grinding. The critical grinding depth was also calculated under the effect of ultrasonic vibration. Then, the conventional ELID (C-ELID) and UVA-ELID grinding were compared. The surface properties, including surface residual stress, surface microstructure, surface roughness, and surface morphology, were used to evaluate the effectiveness and feasibility of UVA-ELID grinding. Whether it was conventional C-ELID or UVA-ELID grinding, the residual compressive stress was introduced into the machined surface, while the former was lower than the latter. The microstructure of the UVA-ELID grinding was evenly distributed, and the ductility removal occurred during material removal. The surface roughness of Ra and Rz was reduced by 14.5% and 20.6%, respectively, during the UVA-ELID grinding. The surface morphology was dramatically changed with the help of ultrasonic vibration. In a word, for nanocomposite ceramic, the UVA-ELID grinding can significantly improve surface performance and achieve a better machining effect.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 86
Author(s):  
Hao Pang ◽  
Gracious Ngaile

The cavitation peening (CP) and cavitation abrasive jet polishing (CAJP) processes employ a cavitating jet to harden the surface or remove surface irregularities. However, a zero incidence angle between the jet and the surface limits the efficiency of these two processes. This limitation can be improved by introducing a secondary jet. The secondary jet interacts with the main jet, carrying bubbles to the proximity of the workpiece surface and aligning the disordered bubble collapse events. Through characterizing the treated surface of AL6061 in terms of the hardness distribution and surface roughness, it was found out that the secondary jet can increase the hardening intensity by 10%, whereas the material removal rate within a localized region increased by 66%. In addition, employing multiple secondary jets can create a patched pattern of hardness distribution. Another finding is that the hardening effect of the cavitation increases with the processing time at first and is then saturated.


2022 ◽  
Vol 16 (1) ◽  
pp. 71-77
Author(s):  
Mitsuyoshi Nomura ◽  
Kenji Ozasa ◽  
Tatsuya Fujii ◽  
Tsunehisa Suzuki ◽  
Yongbo Wu ◽  
...  

This study investigates the development of an ultrasonic vibration-assisted magnetic compound fluid (MCF) polishing technology for final polishing. The fabrication of an experimental apparatus entails an ultrasonic polishing unit, and the experimental investigation of its performance in surface polishing is described. In addition, ultrasonic vibration-assisted MCF polishing under different applied methods of ultrasonic vibration is studied. The experimental results indicate that applying ultrasonic vibration to the workpiece improves the surface roughness and material removal rate when the ultrasonic vibrations are changed. In addition, across the range of polishing conditions employed in this study, the precision surface roughness and high material removal rate can be easily obtained on the acrylic plate by applying an elliptical vibration to the ultrasonic vibration.


2022 ◽  
Vol 23 (1) ◽  
pp. 349-357
Author(s):  
Abbas Fadhil

Aluminum-based metallic matrix compounds are widely used in industrial and aircraft manufacturing due to their advanced characteristics, such as toughness and high strength resistance to weight ratio, etc. Silicon carbide is an important industrial ceramic and it is the fourth hardest ceramic after diamond, boron nitride, and boron carbide. Owing to its low fracture toughness, it is difficult to machine silicon carbide using traditional machining processes. Electrical discharge machine can machine such materials irrespective of their hardness. Aluminum alloy 6061 and 10% SiC based-metal matrix composite were used as a workpiece that was produced by stir casting. In the experimental investigation, pulse current Pc (10, 20, and 30 A), pulse on (Pon) duration (100, 150, and 200 ?sec), and pulse off (Poff) duration (6, 12, and 24 ?sec) were treated as the input variables. The output responses were surface roughness (SR) and material removal rate (MRR). The best value for surface roughness (Ra) reached (1.032 µm) at Pc (10 A), Pon duration (100 ?sec) and Poff (15 ?sec). Also, the best result for the productivity of the process (MRR) reached (69.49 × 10-3 g/min) at Pc (30 A) Pon, (200 ?sec) and (6 ?sec) Poff. Therefore, the experimental outcomes were optimized for surface roughnes and material removal rate by adding 10% SiC to aluminum alloy 6061. ABSTRAK: Sebatian matrik logam berasaskan aluminium telah digunakan secara meluas dalam industri pembuatan dan pesawat kerana ciri-cirinya yang canggih, seperti ketahanan dan daya rintangan yang tinggi kepada nisbah berat, dan lain-lain. Silikon karbida adalah seramik industri yang penting dan ia merupakan seramik keempat terkuat setelah berlian, boron nitrida dan boron karbida. Disebabkan ketahanan frakturnya yang rendah, adalah sukar bagi menghasilkan mesin silikon karbida menggunakan proses pemesinan tradisional. Mesin pelepasan elektrik mampu menghasilkan mesin menggunakan bahan tersebut tanpa mengira kekerasan. Aloi aluminium 6061 dan komposit matrik logam berasaskan SiC 10% telah digunakan sebagai bahan kerja yang terhasil melalui tuangan kacauan. Melalui penyelidikan eksperimen, detik arus Pc (10, 20, dan 30 A), detik hadir (Pon) berdurasi (100, 150, dan 200 ?sec), dan detik henti (Poff) berdurasi (6, 12, dan 24 ?sec) dirawat sebagai pemboleh ubah input. Respon pengeluaran adalah kekasaran permukaan (SR) dan kadar penyingkiran bahan (MRR). Nilai terbaik bagi kekasaran permukaan (Ra) telah mencapai (1.032 µm) pada Pc (10 A), berdurasi Pon (100 ?sec) dan Poff (15 ?sec). Tambahan, hasil terbaik bagi proses produktiviti (MRR) mencapai (69.49 × 10-3 g/min) pada Pc (30 A) Pon, (200 ?sec) dan (6 ?sec) Poff. Oleh itu, hasil eksperimen dioptimumkan bagi permukaan kasar dan kadar penyingkiran bahan dengan tambahan 10% SiC ke aloi aluminium 6061.


Sign in / Sign up

Export Citation Format

Share Document