scholarly journals Axisymmetric landslides on top-shaped asteroids

2021 ◽  
Vol 249 ◽  
pp. 03048
Author(s):  
Deepayan Banik ◽  
Kumar Gaurav ◽  
Ishan Sharma

Spin rates of minor planets or asteroids are known to have been affected by several agents including but not limited to tidal fly-bys, impacts and solar radiation. Surface processes like landslides occur as a result of such rotational changes. We study the evolution of landslides on top-shaped rubble pile asteroids like 101955 Bennu and 162173 Ryugu, with the underlying core modeled as two solid cones fused back to back. Using a depth averaged avalanche theory applicable to granular flows we solve for axisymmetric landslides occurring at various spin rates and regolith friction. Static regions on the surface corresponding to different spin rates are identified from an equilibrium analysis. We then solve for landslides initiated at different latitudes. It is found that landslides equilibrate at lower latitudes as the spin rate is increased. Beyond a critical spin rate regolith is shed from the equator. This critical spin is higher for a lower value of the semi-apex angle of the cone.

1971 ◽  
Vol 12 ◽  
pp. 413-421 ◽  
Author(s):  
B.G. Marsden

There has long been speculation as to whether comets evolve into asteroidal objects. On the one hand, in the original version of the Oort (1950) hypothesis, the cometary cloud was supposed to have formed initially from the same material that produced the minor planets; and an obvious corollary was that the main physical difference between comets and minor planets would be that the latter had long since lost their icy surfaces on account of persistent exposure to strong solar radiation (Öpik, 1963). However, following a suggestion by Kuiper (1951), it is now quite widely believed that, whereas the terrestrial planets and minor planets condensed in the inner regions of the primordial solar nebula, icy objects such as comets would have formed more naturally in the outer parts, perhaps even beyond the orbit of Neptune (Cameron, 1962; Whipple, 1964a). Furthermore, recent studies of the evolution of the short-period comets indicate that it is not possible to produce the observed orbital distribution from the Oort cloud, even when multiple encounters with Jupiter are considered (Havnes, 1970). We must now seriously entertain the possibility that most of the short-period orbits evolved directly from low-inclination, low-eccentricity orbits with perihelia initially in the region between, say, the orbits of Saturn and Neptune, and that these comets have never been in the traditional cloud at great distances from the Sun.


2020 ◽  
Vol 493 (1) ◽  
pp. 765-775 ◽  
Author(s):  
Dimitri Veras ◽  
Pier-Emmanuel Tremblay ◽  
J J Hermes ◽  
Catriona H McDonald ◽  
Grant M Kennedy ◽  
...  

ABSTRACT Identifying planets around O-type and B-type stars is inherently difficult; the most massive known planet host has a mass of only about $3\, \mathrm{M}_{\odot }$. However, planetary systems which survive the transformation of their host stars into white dwarfs can be detected via photospheric trace metals, circumstellar dusty and gaseous discs, and transits of planetary debris crossing our line of sight. These signatures offer the potential to explore the efficiency of planet formation for host stars with masses up to the core-collapse boundary at $\approx 8\, \mathrm{M}_{\odot }$, a mass regime rarely investigated in planet formation theory. Here, we establish limits on where both major and minor planets must reside around $\approx 6\rm {-}8\, \mathrm{M}_{\odot }$ stars in order to survive into the white dwarf phase. For this mass range, we find that intact terrestrial or giant planets need to leave the main sequence beyond approximate minimum star–planet separations of, respectively, about 3 and 6 au. In these systems, rubble pile minor planets of radii 10, 1.0, and 0.1 km would have been shorn apart by giant branch radiative YORP spin-up if they formed and remained within, respectively, tens, hundreds, and thousands of au. These boundary values would help distinguish the nature of the progenitor of metal pollution in white dwarf atmospheres. We find that planet formation around the highest mass white dwarf progenitors may be feasible, and hence encourage both dedicated planet formation investigations for these systems and spectroscopic analyses of the highest mass white dwarfs.


1966 ◽  
Vol 25 ◽  
pp. 197-222 ◽  
Author(s):  
P. J. Message

An analytical discussion of that case of motion in the restricted problem, in which the mean motions of the infinitesimal, and smaller-massed, bodies about the larger one are nearly in the ratio of two small integers displays the existence of a series of periodic solutions which, for commensurabilities of the typep+ 1:p, includes solutions of Poincaré'sdeuxième sortewhen the commensurability is very close, and of thepremière sortewhen it is less close. A linear treatment of the long-period variations of the elements, valid for motions in which the elements remain close to a particular periodic solution of this type, shows the continuity of near-commensurable motion with other motion, and some of the properties of long-period librations of small amplitude.To extend the investigation to other types of motion near commensurability, numerical integrations of the equations for the long-period variations of the elements were carried out for the 2:1 interior case (of which the planet 108 “Hecuba” is an example) to survey those motions in which the eccentricity takes values less than 0·1. An investigation of the effect of the large amplitude perturbations near commensurability on a distribution of minor planets, which is originally uniform over mean motion, shows a “draining off” effect from the vicinity of exact commensurability of a magnitude large enough to account for the observed gap in the distribution at the 2:1 commensurability.


1999 ◽  
Vol 173 ◽  
pp. 189-192
Author(s):  
J. Tichá ◽  
M. Tichý ◽  
Z. Moravec

AbstractA long-term photographic search programme for minor planets was begun at the Kleť Observatory at the end of seventies using a 0.63-m Maksutov telescope, but with insufficient respect for long-arc follow-up astrometry. More than two thousand provisional designations were given to new Kleť discoveries. Since 1993 targeted follow-up astrometry of Kleť candidates has been performed with a 0.57-m reflector equipped with a CCD camera, and reliable orbits for many previous Kleť discoveries have been determined. The photographic programme results in more than 350 numbered minor planets credited to Kleť, one of the world's most prolific discovery sites. Nearly 50 per cent of them were numbered as a consequence of CCD follow-up observations since 1994.This brief summary describes the results of this Kleť photographic minor planet survey between 1977 and 1996. The majority of the Kleť photographic discoveries are main belt asteroids, but two Amor type asteroids and one Trojan have been found.


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


2000 ◽  
Vol 179 ◽  
pp. 155-160
Author(s):  
M. H. Gokhale

AbstractData on sunspot groups have been quite useful for obtaining clues to several processes on global and local scales within the sun which lead to emergence of toroidal magnetic flux above the sun’s surface. I present here a report on such studies carried out at Indian Institute of Astrophysics during the last decade or so.


2000 ◽  
Vol 38 (1) ◽  
pp. 117-140 ◽  
Author(s):  
Sharon Nicholson

Space Weather ◽  
2006 ◽  
Vol 4 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Tracy Staedter
Keyword(s):  

2003 ◽  
Vol 107 ◽  
pp. 743-747
Author(s):  
D. R.S. Lean ◽  
SD. Siciliano
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document