scholarly journals Genetic consequences of a century of protection: serial founder events and survival of the little spotted kiwi ( Apteryx owenii )

2013 ◽  
Vol 280 (1762) ◽  
pp. 20130576 ◽  
Author(s):  
Kristina M. Ramstad ◽  
Rogan M. Colbourne ◽  
Hugh A. Robertson ◽  
Fred W. Allendorf ◽  
Charles H. Daugherty

We present the outcome of a century of post-bottleneck isolation of a long-lived species, the little spotted kiwi ( Apteryx owenii , LSK) and demonstrate that profound genetic consequences can result from protecting few individuals in isolation. LSK were saved from extinction by translocation of five birds from South Island, New Zealand to Kapiti Island 100 years ago. The Kapiti population now numbers some 1200 birds and provides founders for new populations. We used 15 microsatellite loci to compare genetic variation among Kapiti LSK and the populations of Red Mercury, Tiritiri Matangi and Long Islands that were founded with birds from Kapiti. Two LSK native to D'Urville Island were also placed on Long Island. We found extremely low genetic variation and signatures of acute and recent genetic bottleneck effects in all four populations, indicating that LSK have survived multiple genetic bottlenecks. The Long Island population appears to have arisen from a single mating pair from Kapiti, suggesting there is no genetic contribution from D'Urville birds among extant LSK. The N e / N C ratio of Kapiti Island LSK (0.03) is exceptionally low for terrestrial vertebrates and suggests that genetic diversity might still be eroding in this population, despite its large census size.

2021 ◽  
Author(s):  
◽  
Helen R. Taylor

<p>Population bottlenecks reduce genetic variation and population size. Small populations are at greater risk of inbreeding, which further erodes genetic diversity and can lead to inbreeding depression. Inbreeding depression is known to increase extinction risk. Thus, detecting inbreeding depression is important for population viability assessment and conservation management. However, identifying inbreeding depression in wild populations is challenging due to the difficulty of obtaining long-term measures of fitness and error-free measures of individual inbreeding coefficients. I investigated inbreeding depression and our power to detect it in species that have very low genetic variation, using little spotted kiwi (Apteryx owenii) (LSK) as a case study. This endemic New Zealand ratite experienced a bottleneck of, at most, five individuals ~100 years ago and has since been subjected to secondary bottlenecks as a result of introductions to new predator-free locations. There is no behavioural pedigree data available for any LSK population and the status of the species is monitored almost exclusively via population growth. I conducted two seasons of field work to determine hatching success in the two LSK populations with the highest and lowest numbers of founders; Zealandia Sanctuary (40 founders) and Long Island (two founders). I also used simulation-based modelling to assess the feasibility of reconstructing pedigrees based on individual genotypes from LSK populations to calculate pedigree inbreeding coefficients. Finally, I used microsatellite genotypes to measure the genetic erosion in successive filial groupings of Long Island and Zealandia LSK as a result of their respective bottlenecks, and tested for inbreeding depression on Long Island. Hatching success was significantly lower on Long Island than in Zealandia in both years of the study despite significantly higher reproductive effort on Long Island. Although this was suggestive of inbreeding depression on Long Island, simulation results showed that constructing a pedigree for any LSK population based on the genetic markers and samples currently available would lead to inaccurate pedigrees and invalid estimates of individual inbreeding coefficients. Thus, an alternative method of detecting inbreeding and inbreeding depression was required. Microsatellite data showed continued loss of heterozygosity in both populations, but loss of allelic diversity on Long Island only. Individual genotypes indicated that the majority (74%) of the adult Long Island population is comprised of the founding pair (F) and their direct offspring (F1) rather than birds from subsequent generations (F2+). This is not what would be expected if survival was equal between these two filial classes. I suggest that the high levels of inbreeding (≥0.25) in F2+ birds is impacting on their survival, creating a demographic skew in the population and resulting in lower hatching success on average on Long Island when compared to the relatively outbred Zealandia birds. This inbreeding depression appears to have been masked, thus far, by positive population growth on Long Island resulting from the long life span of LSK (27-83 years) and continued reproductive success of the founding pair. Thus, it is likely that the Long Island population will go into decline when the founding pair cease to reproduce. This study highlights the challenges of measuring inbreeding depression in species with very low genetic variation and the importance of assessing the statistical power and reliability of the genetic tools available for those species. It also demonstrates that basic genetic techniques can offer valuable insight when more advanced tools prove error-prone. Monitoring vital rates such as hatching success in conjunction with genetic data is important for assessing the success of conservation translocations and detecting potentially cryptic genetic threats such as inbreeding depression. My results suggest that LSK are being affected by inbreeding depression and that careful genetic management will be required to ensure the long-term viability of this species.</p>


2021 ◽  
Author(s):  
◽  
Helen R. Taylor

<p>Population bottlenecks reduce genetic variation and population size. Small populations are at greater risk of inbreeding, which further erodes genetic diversity and can lead to inbreeding depression. Inbreeding depression is known to increase extinction risk. Thus, detecting inbreeding depression is important for population viability assessment and conservation management. However, identifying inbreeding depression in wild populations is challenging due to the difficulty of obtaining long-term measures of fitness and error-free measures of individual inbreeding coefficients. I investigated inbreeding depression and our power to detect it in species that have very low genetic variation, using little spotted kiwi (Apteryx owenii) (LSK) as a case study. This endemic New Zealand ratite experienced a bottleneck of, at most, five individuals ~100 years ago and has since been subjected to secondary bottlenecks as a result of introductions to new predator-free locations. There is no behavioural pedigree data available for any LSK population and the status of the species is monitored almost exclusively via population growth. I conducted two seasons of field work to determine hatching success in the two LSK populations with the highest and lowest numbers of founders; Zealandia Sanctuary (40 founders) and Long Island (two founders). I also used simulation-based modelling to assess the feasibility of reconstructing pedigrees based on individual genotypes from LSK populations to calculate pedigree inbreeding coefficients. Finally, I used microsatellite genotypes to measure the genetic erosion in successive filial groupings of Long Island and Zealandia LSK as a result of their respective bottlenecks, and tested for inbreeding depression on Long Island. Hatching success was significantly lower on Long Island than in Zealandia in both years of the study despite significantly higher reproductive effort on Long Island. Although this was suggestive of inbreeding depression on Long Island, simulation results showed that constructing a pedigree for any LSK population based on the genetic markers and samples currently available would lead to inaccurate pedigrees and invalid estimates of individual inbreeding coefficients. Thus, an alternative method of detecting inbreeding and inbreeding depression was required. Microsatellite data showed continued loss of heterozygosity in both populations, but loss of allelic diversity on Long Island only. Individual genotypes indicated that the majority (74%) of the adult Long Island population is comprised of the founding pair (F) and their direct offspring (F1) rather than birds from subsequent generations (F2+). This is not what would be expected if survival was equal between these two filial classes. I suggest that the high levels of inbreeding (≥0.25) in F2+ birds is impacting on their survival, creating a demographic skew in the population and resulting in lower hatching success on average on Long Island when compared to the relatively outbred Zealandia birds. This inbreeding depression appears to have been masked, thus far, by positive population growth on Long Island resulting from the long life span of LSK (27-83 years) and continued reproductive success of the founding pair. Thus, it is likely that the Long Island population will go into decline when the founding pair cease to reproduce. This study highlights the challenges of measuring inbreeding depression in species with very low genetic variation and the importance of assessing the statistical power and reliability of the genetic tools available for those species. It also demonstrates that basic genetic techniques can offer valuable insight when more advanced tools prove error-prone. Monitoring vital rates such as hatching success in conjunction with genetic data is important for assessing the success of conservation translocations and detecting potentially cryptic genetic threats such as inbreeding depression. My results suggest that LSK are being affected by inbreeding depression and that careful genetic management will be required to ensure the long-term viability of this species.</p>


2021 ◽  
Vol 78 (3) ◽  
Author(s):  
Sara Stefanowska ◽  
Katarzyna Meyza ◽  
Grzegorz Iszkuło ◽  
Igor J. Chybicki

Abstract Key message Taxus baccata remnants established recently tend to contribute less to the species’ overall genetic variation than historical populations because they are subjected to a greater impact of the founder effect and genetic isolation. As tree trunk perimeter is a rough indicator of genetic variation in a population, this measure should be considered in conservation programs. Context Genetic variation within Taxus baccata (L.) populations is not associated with the current census size but correlates well with the effective size, suggesting that genetic drift intensity reflects variation in demographic histories. Aims We hypothesize that recently established populations are subjected to greater bottleneck than old remnants. Using the mean trunk perimeter as a surrogate of tree age, we test whether the demographic history and genetic variation are associated with the mean tree age. Methods Using 18 microsatellite markers, we analyze the genetic diversity and demographic history of 11 yew populations in Poland to assess the relationship between the mean trunk perimeter and the inferred genetic parameters. Results Populations reveal significant differences in levels of genetic variation and in the intensity and time of genetic bottleneck. After excluding an apparent outlier, the genetic variation is significantly greater while the bottleneck intensity lower in populations with a greater perimeter. Conclusion Due to continuous species decline and increasing fragmentation, the non-uniform contribution of yew remnants to the overall genetic variation tends to decrease together with the mean tree age. Germplasm collections for the species should take into account tree perimeter as a rough indicator of the genetic variation of a population.


2004 ◽  
Vol 78 (19) ◽  
pp. 10582-10587 ◽  
Author(s):  
Hongye Li ◽  
Marilyn J. Roossinck

ABSTRACT Genetic bottlenecks are stochastic events that limit genetic variation in a population and result in founding populations that can lead to genetic drift. Evidence of past genetic bottlenecks in numerous biological systems, from mammals to viruses, has been described. In this study, we used an artificial population of Cucumber mosaic virus consisting of 12 restriction enzyme marker-bearing mutants. This population was inoculated onto young leaves of tobacco plants and monitored throughout the course of systemic infection. We show here that the genetic variation in a defined population of an RNA virus is significantly, stochastically, and reproducibly reduced during the systemic infection process, providing clear evidence of a genetic bottleneck.


Author(s):  
Coby Klein ◽  
Mitchell Baker ◽  
Andrei Alyokhin ◽  
David Mota-Sanchez

Abstract Eastern New York State is frequently the site of Colorado potato beetle (Leptinotarsa decemlineata, Say) populations with the highest observed levels of insecticide resistance to a range of active ingredients. The dominance of a resistant phenotype will affect its rate of increase and the potential for management. On organic farms on Long Island, L. decemlineata evolved high levels of resistance to spinosad in a short period of time and that resistance has spread across the eastern part of the Island. Resistance has also emerged in other parts of the country as well. To clarify the level of dominance or recessiveness of spinosad resistance in different parts of the United States and how resistance differs in separate beetle populations, we sampled in 2010 beetle populations from Maine, Michigan, and Long Island. In addition, a highly resistant Long Island population was assessed in 2012. All populations were hybridized with a laboratory-susceptible strain to determine dominance. None of the populations sampled in 2010 were significantly different from additive resistance, but the Long Island population sampled in 2012 was not significantly different from fully recessive. Recessive inheritance of high-level resistance may help manage its increase.


2011 ◽  
Vol 56 (4) ◽  
pp. 305-314 ◽  
Author(s):  
Carl-Gustaf Thulin ◽  
Linda Englund ◽  
Göran Ericsson ◽  
Göran Spong

1999 ◽  
Vol 13 (3) ◽  
pp. 531-541 ◽  
Author(s):  
Mark D. B. Eldridge ◽  
Juliet M. King ◽  
Anne K. Loupis ◽  
Peter B. S. Spencer ◽  
Andrea C. Taylor ◽  
...  

2007 ◽  
Vol 108 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Mia M. Gaudet ◽  
Marilie D. Gammon ◽  
Jeannette T. Bensen ◽  
Sharon K. Sagiv ◽  
Sumitra Shantakumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document