ovibos moschatus
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 32)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Vol 58 (1) ◽  
Author(s):  
Matilde Tomaselli ◽  
Bjørnar Ytrehus ◽  
Tanja Opriessnig ◽  
Pádraig Duignan ◽  
Chimoné Dalton ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
Xiaofeng Wu ◽  
Chijioke O. Elekwachi ◽  
Shiping Bai ◽  
Yuheng Luo ◽  
Keying Zhang ◽  
...  

Muskox (Ovibos moschatus), as the biggest herbivore in the High Arctic, has been enduring the austere arctic nutritional conditions and has evolved to ingest and digest scarce and high lignified forages to support the growth and reproduce, implying probably harbor a distinct microbial reservoir for the deconstruction of plant biomass. Therefore, metagenomics approach was applied to characterize the rumen microbial community and understand the alteration in rumen microbiome of muskoxen fed either triticale straw or brome hay. The difference in the structure of microbial communities including bacteria, archaea, fungi, and protozoa between the two forages was observed at the taxonomic level of genus. Further, although the highly abundant phylotypes in muskoxen rumen fed either triticale straw or brome hay were almost the same, the selective enrichment different phylotypes for fiber degrading, soluble substrates fermenting, electron and hydrogen scavenging through methanogenesis, acetogenesis, propionogenesis, and sulfur-reducing was also noticed. Specifically, triticale straw with higher content of fiber, cellulose selectively enriched more lignocellulolytic taxa and electron transferring taxa, while brome hay with higher nitrogen content selectively enriched more families and genera for degradable substrates-digesting. Intriguingly, the carbohydrate-active enzyme profile suggested an over representation and diversity of putative glycoside hydrolases (GHs) in the animals fed on triticale straw. The majority of the cellulases belonged to fiver GH families (i.e., GH5, GH6, GH9, GH45, and GH48) and were primarily synthesized by Ruminococcus, Piromyces, Neocallimastix, and Fibrobacter. Abundance of major genes coding for hemicellulose digestion was higher than cellulose mainly including GH8, GH10, GH16, GH26, and GH30, and these enzymes were produced by members of the genera Fibrobacter, Ruminococcus, and Clostridium. Oligosaccharides were mainly of the GH1, GH2, GH3, and GH31 types and were associated with the genera Prevotella and Piromyces. Our results strengthen metatranscriptomic evidence in support of the understanding of the microbial community and plant polysaccharide response to changes in the feed type and host animal. The study also establishes these specific microbial consortia procured from triticale straw group can be used further for efficient plant biomass hydrolysis.


2021 ◽  
pp. 104063872110574
Author(s):  
Julia E. Case ◽  
Rae-Leigh A. Pederzolli ◽  
Edward G. Clark ◽  
Heather Fenton ◽  
Susan J. Kutz ◽  
...  

A muskox neonate ( Ovibos moschatus) that died of starvation was diagnosed with congenital lenticular anomalies that included spherophakia and hypermature cataract associated with probable lens-induced lymphocytic uveitis and neutrophilic keratitis. Impaired sight as a result of cataract and associated inflammation likely contributed to abandonment and starvation, although maternal death cannot be excluded definitively. Ocular lesions, such as congenital cataracts and spherophakia in neonates, may be important factors affecting survival in free-ranging animals.


2021 ◽  
Author(s):  
Roman Croitor ◽  

The concept of “East Carpathian Refugium” is largely based on reports on temperate-climate species from the Late Paleolithic sites of Moldova. The present report proposes new faunistic data from the key Paleolithic sites of Moldova that question the presence of some temperate species in the East Carpathian Region during the Last Glacial Maximum. The revision of archaeozoological material from Cosăuți did not confirm the presence of Capreolus capreolus and Alces alces in this palaeolithic site. Osteological remains previously ascribed to Cervus elaphus, according to new data, belong to Cervus canadensis and Ovibos moschatus.


Author(s):  
Rebecca P. K. D. Berg ◽  
C. Rune Stensvold ◽  
Pikka Jokelainen ◽  
Anna K. Grønlund ◽  
Henrik V. Nielsen ◽  
...  

Polar Biology ◽  
2021 ◽  
Author(s):  
Rebecca J. Duncan ◽  
Margaret E. Andrew ◽  
Mads C. Forchhammer

AbstractArctic ecosystems are particularly vulnerable to impacts of climate change; however, the complex relationships between climate and ecosystems make incorporating effects of climate change into population management difficult. This study used structural equation modelling (SEM) and a 24-year multifaceted monitoring data series collected at Zackenberg, North-East Greenland, to untangle the network of climatic and local abiotic and biotic drivers, determining their direct and indirect effects on two herbivores: musk ox (Ovibos moschatus) and collared lemming (Dicrostonyx groenlandicus). Snow conditions were determined to be the central driver within the system, mediating the effects of climate on herbivore abundance. Under current climate change projections, snow is expected to decrease in the region. Snow had an indirect negative effect on musk ox, as decreased snow depth led to an earlier start to the Arctic willow growing season, shown to increase fecundity and decrease mortality. Musk ox are therefore expected to be more successful under future conditions, within a certain threshold. Snow had both positive and negative effects on lemming, with lemming expected to ultimately be less successful under climate change, as reduction in snow increases their vulnerability to predation. Through their capacity to determine effects of climatic and local drivers within a hierarchy, and the relative strength and direction of these effects, SEMs were demonstrated to have the potential to be valuable in guiding population management.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249281
Author(s):  
Juliette Di Francesco ◽  
Gabriela F. Mastromonaco ◽  
Janice E. Rowell ◽  
John Blake ◽  
Sylvia L. Checkley ◽  
...  

Muskoxen (Ovibos moschatus), a taxonomically unique Arctic species, are increasingly exposed to climate and other anthropogenic changes. It is critical to develop and validate reliable tools to monitor their physiological stress response in order to assess the impacts of these changes. Here, we measured fecal glucocorticoid metabolite (FGM) levels in response to the administration of adrenocorticotropic hormone (ACTH) in the winter (1 IU/kg) and summer (2 IU/kg) using two enzyme immunoassays, one targeting primarily cortisol and the other targeting primarily corticosterone. Fecal cortisol levels varied substantially within and among individuals, and none of the animals in either challenge showed an increase in fecal cortisol following the injection of ACTH. By contrast, two of six (winter) and two of five (summer) muskoxen showed a clear response in fecal corticosterone levels (i.e., maximal percentage increase as compared to time 0 levels > 100%). Increases in fecal corticosterone post-ACTH injection occurred earlier and were of shorter duration in the summer than in the winter and fecal corticosterone levels were, in general, lower during the summer. These seasonal differences in FGM responses may be related to the use of different individuals (i.e., influence of sex, age, social status, etc.) and to seasonal variations in the metabolism and excretion of glucocorticoids, intestinal transit time, voluntary food intake, and fecal output and moisture content. Results from this study support using FGMs as a biomarker of hypothalamic–pituitary–adrenal axis activity in muskoxen, advance our understanding of the physiological adaptations of mammals living in highly seasonal and extreme environments such as the Arctic, and emphasize the importance of considering seasonality in other species when interpreting FGM levels.


ARCTIC ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 87-99
Author(s):  
Johan Michaux ◽  
Markus Dyck ◽  
Peter Boag ◽  
Stephen Lougheed ◽  
Peter Van Coeverden de Groot

Practical tools to quantify range-wide dietary choices of the polar bear have not been well developed, thus impeding the monitoring of this species in a changing climate. Here we describe our steps toward non-invasive polar bear diet determination with the optimization of 454 pyrosequencing of a 136 base pair (bp) mitochondrial cytochrome b (cytb) fragment amplified from the extracts of captive and wild polar bear faeces. We first determine the efficacy, reliability, and accuracy of our method using five faecal samples from a captive polar bear fed a known diet at the Canadian Polar Bear Habitat in Cochrane, Ontario, Canada; 19 samples from three polar bears at the Metro Toronto Zoo, Toronto, Ontario, Canada; and seven samples from seven wild (unfed) polar bears from a holding facility in Churchill, Manitoba, Canada. We report 91% overall success in amplifying a 136 bp cytb amplicon from the faeces of polar bears. Our DNA analyses accurately recovered the vertebrate diet profiles of captive bears fed known diets. We then characterized multiyear vertebrate prey diet choices from free-ranging polar bears from the sea ice of the M’Clintock Channel polar bear management unit, Nunavut, Canada (n = 117 from an unknown number of bears). These data point to a diet unsurprisingly dominated by ringed seal (Pusa hispida) while including evidence of bearded seal (Erignathus barbatus), harbour seal (Phoca vitulina), muskox (Ovibos moschatus ssp.), Arctic fox (Vulpes lagopus), wolf (Canis lupus), Herring Gull (Larus argentatus), and Willow Ptarmigan (Lagopus lagopus). We found low levels of contamination (< 3% of sequences when present) and suggest specific process improvements to reduce contamination in range-wide studies. Together, these findings indicate that next-generation sequencing-based diet assessments show great promise in monitoring free-ranging polar bears in this time of climate change.   


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 224
Author(s):  
Carlos Sacristán ◽  
Knut Madslien ◽  
Irene Sacristán ◽  
Siv Klevar ◽  
Carlos G. das Neves

Hepatitis E virus (HEV), a major cause of viral hepatitis worldwide, is considered an emerging foodborne zoonosis in Europe. Pigs (Sus scrofa domestica) and wild boars (S. scrofa) are recognized as important HEV reservoirs. Additionally, HEV infection and exposure have been described in cervids. In Norway, HEV has been identified in pigs and humans; however, little is known regarding its presence in wild ungulates in the country. We used a species-independent double-antigen sandwich ELISA to detect antibodies against HEV in the sera of 715 wild ungulates from Norway, including 164 moose (Alces alces), 186 wild Eurasian tundra reindeer (Rangifer tarandus tarandus), 177 red deer (Cervus elaphus), 86 European roe deer (Capreolus capreolus), and 102 muskoxen (Ovibos moschatus). The overall seroprevalence was 12.3% (88/715). Wild reindeer had the highest seropositivity (23.1%, 43/186), followed by moose (19.5%, 32/164), muskoxen (5.9%, 6/102), and red deer (4%, 7/177). All roe deer were negative. According to our results, HEV is circulating in wild ungulates in Norway. The high seroprevalence observed in wild reindeer and moose indicates that these species may be potential reservoirs of HEV. To the authors’ knowledge, this is the first report of HEV exposure in reindeer from Europe and in muskoxen worldwide.


Sign in / Sign up

Export Citation Format

Share Document