scholarly journals Oxidative Modification of LHC II Associated with Photosystem II and PS I-LHC I-LHC II Membranes

2021 ◽  
Author(s):  
Ravindra S Kale ◽  
Jacob Seep ◽  
Larry Sallans ◽  
Laurie K Frankel ◽  
Terry M. Bricker

Under aerobic conditions the production of Reactive Oxygen Species (ROS) by electron transport chains is unavoidable, and occurs in both autotrophic and heterotrophic organisms. In photosynthetic organisms both Photosystem II (PS II) and Photosystem I (PS I), in addition to the cytochrome b6/f complex, are demonstrated sources of ROS. All of these membrane protein complexes exhibit oxidative damage when isolated from field-grown plant material. An additional possible source of ROS in PS I and PS II is the distal, chlorophyll-containing light-harvesting array LHC II, which is present in both photosystems. These serve as possible sources of 1O2 produced by the interaction of 3O2 with 3chl* produced by intersystem crossing. We have hypothesized that amino acid residues close to the sites of ROS generation will be more susceptible to oxidative modification than distant residues. In this study, we have identified oxidized amino acid residues in a subset of the spinach LHC II proteins (Lhcb1 and Lhcb2) that were associated with either PS II membranes (i.e. BBYs) or PS I-LHC I-LHC II membranes, both of which were isolated from field-grown spinach. We identified oxidatively modified residues by high-resolution tandem mass spectrometry. Interestingly, two different patterns of oxidative modification were evident for the Lhcb1 and Lhcb2 proteins from these different sources. In the LHC II associated with PS II membranes, oxidized residues were identified to be located on the stromal surface of Lhcb1 and, to a much lesser extent, Lhcb2. Relatively few oxidized residues were identified as buried in the hydrophobic core of these proteins. The LHC II associated with PS I-LHC I-LHC II membranes, however, exhibited fewer surface-oxidized residues but, rather a large number of oxidative modifications buried in the hydrophobic core regions of both Lhcb1 and Lhcb2, adjacent to the chlorophyll prosthetic groups. These results appear to indicate that ROS, specifically 1O2, can modify the Lhcb proteins associated with both photosystems and that the LHC II associated with PS II membranes represent a different population from the LHC II associated with PS I-LHC I-LHC II membranes.

2019 ◽  
Author(s):  
Ravindra Kale ◽  
Larry Sallans ◽  
Laurie K. Frankel ◽  
Terry M. Bricker

AbstractReactive oxygen species (ROS) production is an unavoidable byproduct of electron transport under aerobic conditions. Photosystem II (PS II), the cytochrome b6f complex and Photosystem I (PS I) are all demonstrated sources of ROS. It has been proposed that PS I produces substantial levels of a variety of ROS including 1O2, H2O2 and, possibly, , however, the site(s) of ROS production within PS I has been the subject of significant debate. We hypothesize that amino acid residues close to the sites of ROS generation will be more susceptible to oxidative modification than distant residues. In this study, we have identified oxidized amino acid residues in spinach PS I which was isolated from field-grown spinach. The modified residues were identified by high-resolution tandem mass spectrometry. As expected, many of the modified residues lie on the surface of the complex. However, a well-defined group of oxidized residues, both buried and surface-exposed, lead from the chl a’ of P700 to the surface of PS I. These residues (PsaB: 609F, 611E, 617M, 619W, 620L, and PsaF: 139L, 142A,143D) may identify a preferred route for ROS, probably 1O2, to egress the complex from the vicinity of P700. Additionally, two buried residues located in close proximity to A1B (PsaB:712H and 714S) were modified, which may be consistent with A1B being a source of . Surprisingly, no oxidatively modified residues were identified in close proximity to the 4Fe-FS clusters FX, FA or FB. These cofactors had been identified as a principal targets for ROS damage in the photosystem. Finally, a large number of residues located in the hydrophobic cores of Lhca1-Lhca4 are oxidatively modified. These appear to be the result of 1O2 production by the distal antennae for the photosystem.


2019 ◽  
Vol 11 (12) ◽  
pp. 1069-1082 ◽  
Author(s):  
Yufang Wang ◽  
Peiliang Shi ◽  
Qin Chen ◽  
Zan Huang ◽  
Dayuan Zou ◽  
...  

Abstract Disrupted mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation are often associated with macrophage pyroptosis. It remains unclear how these forms of mitochondrial dysfunction relate to inflammasome activation and gasdermin-D (Gsdmd) cleavage, two central steps of the pyroptotic process. Here, we also found MMP collapse and ROS generation induced by Nlrp3 inflammasome activation as previous studies reported. The elimination of ROS alleviated the cleavage of Gsdmd, suggesting that Gsdmd cleavage occurs downstream of ROS release. Consistent with this result, hydrogen peroxide treatment augmented the cleavage of Gsdmd by caspase-1. Indeed, four amino acid residues of Gsdmd were oxidized under oxidative stress in macrophages. The efficiency of Gsdmd cleavage by inflammatory caspase-1 was dramatically reduced when oxidative modification was blocked by mutation of these amino acid residues. These results demonstrate that Gsdmd oxidation serves as a de novo mechanism by which mitochondrial ROS promote Nlrp3 inflammasome-dependent pyroptotic cell death.


2017 ◽  
Author(s):  
Ryan M. Taylor ◽  
Larry Sallans ◽  
Laurie K. Frankel ◽  
Terry M. Bricker

AbstractThe cytochrome b6f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b6f is 10-20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2•−,1O2, and, possibly, H2O2) and the site(s) of ROS production within the b6f complex has been the subject of some debate. Proposed sources of ROS have include the heme bp, PQp•− (possible sources for O2•−), the Rieske iron-sulfur cluster (possible source of O2•− and/or H2O2), Chl a (possible source of 1O2) and heme Cn (possible source of O2•− and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b6f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b6f complex.


2020 ◽  
Vol 143 (3) ◽  
pp. 263-273
Author(s):  
Ravindra Kale ◽  
Larry Sallans ◽  
Laurie K. Frankel ◽  
Terry M. Bricker
Keyword(s):  
Ps I ◽  

1995 ◽  
Vol 50 (1-2) ◽  
pp. 77-85
Author(s):  
Manoj K. Joshi ◽  
Prasanna Mohanty ◽  
Salil Bose

Abstract Thylakoids isolated from SAN 9785 (4-chloro-5-dimethylamino-2-phenyl-3(2H)-pyridazi-none)-treated pea plants showed an inhibition of “state transition” and the light-harvesting complex II (LHC II) phosphorylation-mediated changes in the energy distribution between photosystem II (PS II) and photosystem I (PS I) as measured by a decrease in PS II and an increase in PS I fluorescence yield. Interestingly, in these thylakoids the extent of phosphorylation-induced migration of light-harvesting complex (LHC II-P) to non-appressed mem­brane regions was only marginally inhibited. We propose that the suppression in the ability for “state transition” by SANDOZ 9785 (SAN 9785) treatment occurs due to a lack of effec­tive coupling of the migrated LHC II-P and PS I. Since we observed a decrease in the antenna size of PS I of the treated plants, the lack of effective coupling is attributed to this decrease in the antenna size of PS I.


2002 ◽  
Vol 29 (10) ◽  
pp. 1131 ◽  
Author(s):  
Xiao-Ping Li ◽  
Alba Phippard ◽  
Jae Pasari ◽  
Krishna K. Niyogi

In land plants, photosystem II subunit S (PsbS) plays a key role in xanthophyll- and pH-dependent non-photochemical quenching (qE) of excess absorbed light energy. Arabidopsis thaliana (L.) Heynh. npq4 mutants are defective in the psbS gene and have impaired qE. Exactly how the PsbS protein is involved in qE is unclear, but it has been proposed that PsbS binds H+ and/or de-epoxidized xanthophylls in excess light as part of the qE mechanism. To identify amino acid residues that are important for PsbS function, we sequenced the psbS gene from eight npq4 point mutant alleles isolated by forward genetics screening, including two new alleles. In the four transmembrane helices of PsbS, several amino acid residues were found to affect the stability and/or function of the protein. By comparing the predicted amino acid sequences of PsbS from several plant species and studying the proposed topological structure of PsbS, eight possible H+-binding amino acid residues on the lumenal side of the protein were identified and then altered by site-directed mutagenesis in vitro. The mutant psbS genes were transformed into npq4-1, a psbS deletion mutant, to test the stability and function of the mutant PsbS proteins in�vivo. The results demonstrate that two conserved, protonatable amino acids, E122 and E226, are especially critical for the function of PsbS.


2021 ◽  
Vol 9 (3) ◽  
pp. 369-376
Author(s):  
O.A. Zav’yalova ◽  
◽  
Yu.A. Marsyanova ◽  
Yu.V. Abalenikhinа ◽  
A.F. Ishtulin ◽  
...  

BACKGROUND: The constancy of the protein composition of the body is one of the most important conditions for normal vital activity. Deviations in the content of the main bioelements, in particular, mixed valence metals, caused by environmental factors, improper nutrition and other factors, lead to various disorders. One of the properties of metals of mixed valence is the abil-ity to cause metal-catalyzed oxidation of proteins in joint action with active forms of oxygen. It seems interesting to study the oxidative modification of the amino acid residues of albumin and the change in its properties. AIM: To study the effect of reactive oxygen intermediates generated by the Fenton reaction in the presence of Fe2+ and Cu2+ on the oxidative modification of amino acid residues of bovine serum albumin. MATERIALS AND METHODS: The study was carried out on bovine serum albumin (BSA), which was incubated for 2 hours in a mixture of Fenton's reagents – FeSO4 + H2O2 and in a mixture of СuSO4 + H2O2. The quantitative protein content in the samples was determined with the bromcresol green reagent (Albumin-Olvex). The content of carbonyl derivatives of proteins was estimated by the method of R.L. Levine modified by E.E. Dubinina. The content of thiol groups in albumin samples from the control and experimental groups was determined by the Ellman method with DTNB (under non-denaturing conditions. RESULTS: The presented results demonstrate that under the action of Cu2+ ions, the formation of carbonyl derivatives of aliphatic amino acids of albumin is less than in the presence of Fe2+, which can be explained by the different degrees of albumin affinity to metals of variable valence. The rate of mobility of oxidatively modified albumin in polyacrylamide gel decreases, which is explained by protein aggregation due to bityrosine cross-links. CONCLUSION: Variable valence metals affect the modification of albumin. The change in the functional properties of the protein is of physiological significance, including the case of extracellular mobilization of iron and copper.


Sign in / Sign up

Export Citation Format

Share Document