oxygenic photosynthesis
Recently Published Documents


TOTAL DOCUMENTS

485
(FIVE YEARS 147)

H-INDEX

71
(FIVE YEARS 11)

Author(s):  
Martina Bečková ◽  
Roman Sobotka ◽  
Josef Komenda

AbstractThe repair of photosystem II is a key mechanism that keeps the light reactions of oxygenic photosynthesis functional. During this process, the PSII central subunit D1 is replaced with a newly synthesized copy while the neighbouring CP43 antenna with adjacent small subunits (CP43 module) is transiently detached. When the D2 protein is also damaged, it is degraded together with D1 leaving both the CP43 module and the second PSII antenna module CP47 unassembled. In the cyanobacterium Synechocystis sp. PCC 6803, the released CP43 and CP47 modules have been recently suggested to form a so-called no reaction centre complex (NRC). However, the data supporting the presence of NRC can also be interpreted as a co-migration of CP43 and CP47 modules during electrophoresis and ultracentrifugation without forming a mutual complex. To address the existence of NRC, we analysed Synechocystis PSII mutants accumulating one or both unassembled antenna modules as well as Synechocystis wild-type cells stressed with high light. The obtained results were not compatible with the existence of a stable NRC since each unassembled module was present as a separate protein complex with a mutually similar electrophoretic mobility regardless of the presence of the second module. The non-existence of NRC was further supported by isolation of the His-tagged CP43 and CP47 modules from strains lacking either D1 or D2 and their migration patterns on native gels.


2022 ◽  
Author(s):  
D. LAZAR ◽  
A. STIRBET ◽  
L.O. BJÖRN ◽  
G. GOVINDJEE

2021 ◽  
Author(s):  
Hamed Sattari Vayghan ◽  
Wojciech J Nawrocki ◽  
Christo Schiphorst ◽  
Dimitri Tolleter ◽  
Hu Chen ◽  
...  

Light absorbed by chlorophylls of photosystem II and I drives oxygenic photosynthesis. Light-harvesting complexes increase the absorption cross-section of these photosystems. Furthermore, these complexes play a central role in photoprotection by dissipating the excess of absorbed light energy in an inducible and regulated fashion. In higher plants, the main light-harvesting complex is the trimeric LHCII. In this work, we used CRISPR/Cas9 to knockout the five genes encoding LHCB1, which is the major component of the trimeric LHCII. In absence of LHCB1 the accumulation of the other LHCII isoforms was only slightly increased, thereby resulting in chlorophyll loss leading to a pale green phenotype and growth delay. Photosystem II absorption cross-section was smaller while photosystem I absorption cross-section was unaffected. This altered the chlorophyll repartition between the two photosystems, favoring photosystem I excitation. The equilibrium of the photosynthetic electron transport was partially maintained by a lower photosystem I over photosystem II reaction center ratio and by the dephosphorylation of LHCII and photosystem II. Loss of LHCB1 altered the thylakoid structure, with less membrane layers per grana stack and reduced grana width. Stable LHCB1 knock out lines allow characterizing the role of this protein in light harvesting and acclimation and pave the way for future in vivo mutational analyses of LHCII.


2021 ◽  
Author(s):  
Anita Santana Sanchez ◽  
Lauri Nikkanen ◽  
Gabor Toth ◽  
Maria Ermakova ◽  
Sergey Kosourov ◽  
...  

The model heterocyst-forming filamentous cyanobacterium, Anabaena sp. PCC 7120 (Anabaena) represents multicellular organisms capable of simultaneously performing oxygenic photosynthesis in vegetative cells and the O2-sensitive N2-fixation inside the heterocysts. The flavodiiron proteins (FDPs) have been shown to participate in photoprotection of photosynthesis by driving excess electrons to O2 (Mehler-like reaction). Here, we addressed the physiological relevance of the vegetative cell-specific Flv1A and Flv3A on the bioenergetic processes occurring in the diazotrophic Anabaena under variable CO2. We demonstrate that both Flv1A and Flv3A are required for proper induction of the Mehler-like reaction upon a sudden change in light intensity, which is likely important for the activation of carbon-concentrating mechanisms (CCM) and CO2 fixation. Nevertheless, Flv3A showed a more important role in photoprotection than Flv1A. Under low CO2 diazotrophic conditions, Flv3A is capable of mediating moderate O2 photoreduction, independently of Flv1A, but in coordination with Flv2 and Flv4. Strikingly, the lack of Flv3A resulted in strong downregulation of the heterocyst-specific uptake hydrogenase, which led to enhanced H2 photoproduction under both oxic and micro-oxic conditions. These results reveal a novel regulatory network between the Mehler-like reaction and the H2 metabolism, which is of great interest for future photobiological production of H2 in Anabaena.


2021 ◽  
Vol 22 (24) ◽  
pp. 13464
Author(s):  
Yun Song ◽  
Li Feng ◽  
Mohammed Abdul Muhsen Alyafei ◽  
Abdul Jaleel ◽  
Maozhi Ren

The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant response to adverse conditions. Furthermore, chloroplasts communicate with the nucleus through retrograde signaling, for instance, reactive oxygen signaling. All of the above facilitate the chloroplast’s exquisite flexibility in responding to environmental stresses. In this review, we summarize recent findings on the involvement of chloroplasts in plant regulatory responses to various abiotic and biotic stresses including heat, chilling, salinity, drought, high light environmental stress conditions, and pathogen invasions. This review will enrich the better understanding of interactions between chloroplast and environmental stresses, and will lay the foundation for genetically enhancing plant-stress acclimatization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carmen Jerez ◽  
Paloma Salinas ◽  
Antonio Llop ◽  
Raquel Cantos ◽  
Javier Espinosa ◽  
...  

Cyanobacteria, phototrophic organisms performing oxygenic photosynthesis, must adapt their metabolic processes to important environmental challenges, like those imposed by the succession of days and nights. Not surprisingly, certain regulatory proteins are found exclusively in this phylum. One of these unique proteins, PipX, provides a mechanistic link between signals of carbon/nitrogen and of energy, transduced by the signaling protein PII, and the control of gene expression by the global nitrogen regulator NtcA. PII, required for cell survival unless PipX is inactivated or downregulated, functions by protein–protein interactions with transcriptional regulators, transporters, and enzymes. PipX also functions by protein–protein interactions, and previous studies suggested the existence of additional interacting partners or included it into a relatively robust six-node synteny network with proteins apparently unrelated to the nitrogen regulation system. To investigate additional functions of PipX while providing a proof of concept for the recently developed cyanobacterial linkage network, here we analyzed the physical and regulatory interactions between PipX and an intriguing component of the PipX synteny network, the essential ribosome assembly GTPase EngA. The results provide additional insights into the functions of cyanobacterial EngA and of PipX, showing that PipX interacts with the GD1 domain of EngA in a guanosine diphosphate-dependent manner and interferes with EngA functions in Synechococcus elongatus at a low temperature, an environmentally relevant context. Therefore, this work expands the PipX interaction network and establishes a possible connection between nitrogen regulation and the translation machinery. We discuss a regulatory model integrating previous information on PII–PipX with the results presented in this work.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stefan Lucius ◽  
Alexander Makowka ◽  
Klaudia Michl ◽  
Kirstin Gutekunst ◽  
Martin Hagemann

Cyanobacteria perform plant-like oxygenic photosynthesis to convert inorganic carbon into organic compounds and can also use internal carbohydrate reserves under specific conditions. A mutant collection with defects in different routes for sugar catabolism was studied to analyze which of them is preferentially used to degrade glycogen reserves in light-exposed cells of Synechocystis sp. PCC 6803 shifted from high to low CO2 conditions. Mutants defective in the glycolytic Embden–Meyerhof–Parnas pathway or in the oxidative pentose-phosphate (OPP) pathway showed glycogen levels similar to wild type under high CO2 (HC) conditions and were able to degrade it similarly after shifts to low CO2 (LC) conditions. In contrast, the mutant Δeda, which is defective in the glycolytic Entner-Doudoroff (ED) pathway, accumulated elevated glycogen levels under HC that were more slowly consumed during the LC shift. In consequence, the mutant Δeda showed a lowered ability to respond to the inorganic carbon shifts, displayed a pronounced lack in the reactivation of growth when brought back to HC, and differed significantly in its metabolite composition. Particularly, Δeda accumulated enhanced levels of proline, which is a well-known metabolite to maintain redox balances via NADPH levels in many organisms under stress conditions. We suggest that deletion of eda might promote the utilization of the OPP shunt that dramatically enhance NADPH levels. Collectively, the results point at a major regulatory contribution of the ED pathway for the mobilization of glycogen reserves during rapid acclimation to fluctuating CO2 conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianyu Bai ◽  
Lin Guo ◽  
Mingyu Xu ◽  
Lirong Tian

Photosystem I (PSI) is one of the most efficient photoelectric apparatus in nature, converting solar energy into condensed chemical energy with almost 100% quantum efficiency. The ability of PSI to attain such high conversion efficiency depends on the precise spatial arrangement of its protein subunits and binding cofactors. The PSI structures of oxygenic photosynthetic organisms, namely cyanobacteria, eukaryotic algae, and plants, have undergone great variation during their evolution, especially in eukaryotic algae and vascular plants for which light-harvesting complexes (LHCI) developed that surround the PSI core complex. A detailed understanding of the functional and structural properties of this PSI-LHCI is not only an important foundation for understanding the evolution of photosynthetic organisms but is also useful for designing future artificial photochemical devices. Recently, the structures of such PSI-LHCI supercomplexes from red alga, green alga, diatoms, and plants were determined by X-ray crystallography and single-particle cryo-electron microscopy (cryo-EM). These findings provide new insights into the various structural adjustments of PSI, especially with respect to the diversity of peripheral antenna systems arising via evolutionary processes. Here, we review the structural details of the PSI tetramer in cyanobacteria and the PSI-LHCI and PSI-LHCI-LHCII supercomplexes from different algae and plants, and then discuss the diversity of PSI-LHCI in oxygenic photosynthesis organisms.


Author(s):  
Elena Martín-Clemente ◽  
Ignacio J. Melero-Jiménez ◽  
Elena Bañares-España ◽  
Antonio Flores-Moya ◽  
María J. García-Sánchez

AbstractSulphide is proposed to have influenced the evolution of primary stages of oxygenic photosynthesis in cyanobacteria. However, sulphide is toxic to most of the species of this phylum, except for some sulphide-tolerant species showing various sulphide-resistance mechanisms. In a previous study, we found that this tolerance can be induced by environmental sulphidic conditions, in which two experimentally derived strains with an enhanced tolerance to sulphide were obtained from Microcystis aeruginosa, a sensitive species, and Oscillatoria, a sulphide-tolerant genus. We have now analysed the photosynthetic performance of the wild-type and derived strains in the presence of sulphide to shed light on the characteristics underlying the increased tolerance. We checked whether the sulphide tolerance was a result of higher PSII sulphide resistance and/or the induction of sulphide-dependent anoxygenic photosynthesis. We observed that growth, maximum quantum yield, maximum electron transport rate and photosynthetic efficiency in the presence of sulphide were less affected in the derived strains compared to their wild-type counterparts. Nevertheless, in 14C photoincoporation assays, neither Oscillatoria nor M. aeruginosa exhibited anoxygenic photosynthesis using sulphide as an electron donor. On the other hand, the content of photosynthetic pigments in the derived strains was different to that observed in the wild-type strains. Thus, an enhanced PSII sulphide resistance appears to be behind the increased sulphide tolerance displayed by the experimentally derived strains, as observed in most natural sulphide-tolerant cyanobacterial strains. However, other changes in the photosynthetic machinery cannot be excluded.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hongping He ◽  
Xiao Wu ◽  
Haiyang Xian ◽  
Jianxi Zhu ◽  
Yiping Yang ◽  
...  

AbstractThe evolution of oxygenic photosynthesis is a pivotal event in Earth’s history because the O2 released fundamentally changed the planet’s redox state and facilitated the emergence of multicellular life. An intriguing hypothesis proposes that hydrogen peroxide (H2O2) once acted as the electron donor prior to the evolution of oxygenic photosynthesis, but its abundance during the Archean would have been limited. Here, we report a previously unrecognized abiotic pathway for Archean H2O2 production that involves the abrasion of quartz surfaces and the subsequent generation of surface-bound radicals that can efficiently oxidize H2O to H2O2 and O2. We propose that in turbulent subaqueous environments, such as rivers, estuaries and deltas, this process could have provided a sufficient H2O2 source that led to the generation of biogenic O2, creating an evolutionary impetus for the origin of oxygenic photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document