Does Graft Construct Lengthening at the Fixations Cause an Increase in Anterior Laxity Following Anterior Cruciate Ligament Reconstruction in vivo?

2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Conrad K. Smith ◽  
M. L. Hull ◽  
S. M. Howell

A millimeter-for-millimeter relation between an increase in length of an anterior cruciate ligament graft construct and an increase in anterior laxity has been demonstrated in multiple in vitro studies. Based on this relation, a 3 mm increase in length of the graft construct following surgery could manifest as a 3 mm increase in anterior laxity in vivo, which is considered clinically unstable. Hence, the two primary objectives were to determine whether the millimeter-for-millimeter relation exists in vivo for slippage-resistant fixation of a soft-tissue graft and, if it does not exist, then to what extent the increase in stiffness caused by biologic healing of the graft to the bone tunnel offsets the potential increase in anterior laxity resulting from lengthening at the sites of fixation. Sixteen subjects were treated with a fresh-frozen, nonirradiated, nonchemically processed tibialis allograft. Tantalum markers were injected into the graft, fixation devices, and bones. On the day of surgery and at 1, 2, 3, and 4 months, Roentgen stereophotogrammetric analysis was used to compute anterior laxity at 150 N of anterior force and the total slippage from both sites of fixation. A simple linear regression was performed to determine whether the millimeter-for-millimeter relation existed and a springs-in-series model of the graft construct was used to determine the extent to which the increase in stiffness caused by biological healing of the graft to the bone tunnel offset the increase in anterior laxity resulting from lengthening at the sites of fixation. There was no correlation between lengthening at the sites of fixation and the increase in anterior laxity at 1 month (R2=0.0, slope=0.2). Also, the increase in stiffness of the graft construct caused by biologic healing of the graft to the bone tunnel offset 0.7 mm of the 1.5 mm potential increase in anterior laxity resulting from lengthening at the sites of fixation. This relatively large offset of nearly 50% occurred because lengthening at the sites of fixation was small.

2018 ◽  
Vol 24 (3-4) ◽  
pp. 322-334 ◽  
Author(s):  
Corina Adriana Ghebes ◽  
Nathalie Groen ◽  
Yau Chuk Cheuk ◽  
Sai Chuen Fu ◽  
Hugo Machado Fernandes ◽  
...  

2001 ◽  
Vol 29 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Bruce D. Beynnon ◽  
Benjamin S. Uh ◽  
Robert J. Johnson ◽  
Braden C. Fleming ◽  
Per A. Renström ◽  
...  

2000 ◽  
Vol 122 (6) ◽  
pp. 600-603 ◽  
Author(s):  
Isaac Zacharias ◽  
M. L. Hull ◽  
Stephen M. Howell

To determine which exercises do not overload the graft-fixation complex during intensive rehabilitation from reconstructive surgery of the anterior cruciate ligament (ACL), it would be useful to measure ACL graft loads during rehabilitative activities in vivo in humans. A previous paper by Ventura et al. (1998) reported on the design of an implantable transducer integrated into a femoral fixation device and demonstrated that the transducer could be calibrated to measure graft loads to better than 10 percent full-scale error in cadaveric knees. By measuring both the static and fatigue strengths of the transducer, the purpose of the present study was to determine whether the transducer could be safely implanted in humans without risk of structural failure. Eight devices were loaded to failure statically. Additionally, seven devices were tested using the up-and-down method to estimate the median fatigue strength at a life of 225,000 cycles. The average ultimate strength was 1856±74 N and the median fatigue strength was 441 N at a life of 225,000 cycles. The maximum graft load during normal daily activities is estimated to be 500 N and the 225,000 cycle life corresponds to that of the average healthy individual during a 12-week period. Considering that patients who have had an ACL reconstruction are less ambulatory than normal immediately following surgery and that biologic incorporation of the graft should be well developed by 12 weeks thus decreasing the load transmitted to the fixation device, the FDT can be safely implanted in humans without undue risk of structural failure. [S0148-0731(00)00606-3]


Author(s):  
Ali Hosseini ◽  
Thomas J. Gill ◽  
Guoan Li

The knowledge of in-vivo ACL forces is instrumental for understanding ACL injury mechanisms and for improving surgical ACL reconstruction techniques. Several in-vitro investigations have measured ACL forces in response to various loads applied to the knee. However, in-vivo ACL forces in response to controlled loading are still unknown. The objective of this study was to estimate the force of healthy ACL as well as the possible upper bound of ACL forces under an increasing axial tibial loading in living subjects using a non-invasive method.


2015 ◽  
Vol 15 (01) ◽  
pp. 1550006 ◽  
Author(s):  
ZHENG LI ◽  
JIANKANG HE ◽  
XIANG LI ◽  
WEIGUO BIAN ◽  
WENYOU ZHANG ◽  
...  

Silk was widely investigated as a promising scaffold material in ligament tissue engineering. Although a variety of silk scaffolds were developed for the regeneration of anterior cruciate ligament (ACL) in vitro and in vivo, more investigations should be performed in large animals to translate these findings into clinical applications. The aim of this study is to evaluate the feasibility of using silk-based ACL scaffolds to regenerate damaged ACLs in porcine model. The microstructural organization, tissue regeneration as well as ligament-bone interface of silk implants were evaluated with scanning electron microscopy, micro-computerized tomography, histological and immunohistochemical staining at three and six months postoperatively. The results demonstrated that silk fibers in the ACL scaffolds organized in parallel similar with collagen fibers in native ligaments, which facilitated and guided the penetration of newly regenerated tissue into the pores among silk fibers. Collagen production especially collagen I in silk implants significantly increased from three to six months, and was gradually close to the level of native ligaments. At implant-bone interface, indirect ligament-bone insertion was observed at three months and substantial Sharpey's fibers formed at six months. The results indicated that the silk-based ACL scaffold provides a promising tissue engineering approach for ACL regeneration.


2019 ◽  
Vol 33 (10) ◽  
pp. 1407-1414 ◽  
Author(s):  
Jiangyu Cai ◽  
Li Zhang ◽  
Jun Chen ◽  
Shiyi Chen

Anterior cruciate ligament reconstruction using polyethylene terephthalate artificial ligaments is one of the research hotspots in sports medicine but it is still challenging to achieve biological healing. The purpose of this study was to modify polyethylene terephthalate ligament with silk fibroin through ethyl-3–(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) crosslink and to investigate the performance of graft remodeling in vitro and in vivo. After silk fibroin coating, changes in the surface properties of ligament were characterized by scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy and water contact angle measurements. The compatibility of polyethylene terephthalate ligament with silk fibroin coating was investigated in vitro. The results showed the silk fibroin coating significantly improved adhesion, proliferation and extracellular matrix secretion of fibroblast cells. Moreover, a rabbit anterior cruciate ligament reconstruction model was established to evaluate the effect of ligament with silk fibroin coating in vivo. The gross observation and histological results showed that the silk fibroin coating significantly inhibited inflammation response and promoted new tissue regeneration with fusiform cells infiltration in and around the graft. Furthermore, the expressions of collagen I protein and mRNA in the silk fibroin-coated polyethylene terephthalate group were much higher than those in the control group according to the immunohistochemical and real-time polymerase chain reaction results. Therefore, silk fibroin coating through EDC/NHS crosslink promotes the biocompatibility and remodeling process of polyethylene terephthalate artificial ligament in vitro and in vivo. It can be considered as a potential solution to the problem of poor remodeling of artificial ligaments after anterior cruciate ligament reconstruction in the clinical applications.


2018 ◽  
Vol 32 (05) ◽  
pp. 441-447
Author(s):  
Richard Ma ◽  
Mark Stasiak ◽  
Xiang-Hua Deng ◽  
Scott Rodeo

AbstractThe purpose of this study is to establish a small animal anterior cruciate ligament (ACL) reconstruction research model where ACL graft force can be varied to create different graft force patterns with controlled knee motion. Cadaveric (n = 10) and in vivo (n = 10) rat knees underwent ACL resection followed by reconstruction using a soft tissue autograft. Five cadaveric and five in vivo knees received a nonisometric, high-force femoral graft tunnel position. Five cadaveric and five in vivo knees received a more isometric, low-force graft tunnel position. ACL graft force (N) was then recorded as the knee was ranged from extension to 90 degrees using a custom knee flexion device. Our results demonstrate that distinct ACL graft force patterns were generated for the high-force and low-force femoral graft tunnels. For high-force ACL grafts, ACL graft forces increased as the knee was flexed both in cadaveric and in vivo knees. At 90 degrees of knee flexion, high-force ACL grafts had significantly greater mean graft force when compared with baseline (cadaver: 7.76 ± 0.54 N at 90 degrees vs. 4.94 ± 0.14 N at 0 degree, p = 0.004; in vivo: 7.29 ± 0.42 N at 90 degrees vs. 4.74 ± 0.13 N at 0 degree, p = 0.007). In contrast, the graft forces for low-force ACL grafts did not change with knee flexion (cadaver: 4.94 ± 0.11 N at 90 degrees vs. 4.72 ± 0.14 N at 0 degree, p = 0.41; in vivo: 4.78 ± 0.26 N at 90 degrees vs. 4.77 ± 0.06 N at 0 degree, p = 1). Compared with nonisometric ACL grafts, the graft force for grafts placed in an isometric position had significantly lower ACL graft forces at 15, 30, 45, 60, 70, and 90 degrees in both cadaveric and in vivo knees. In conclusion, we have developed a novel ACL reconstruction model that can reproducibly produce two ACL graft force patterns. This model would permit further research on how ACL graft forces may affect subsequent graft healing, maturation, and function.


Sign in / Sign up

Export Citation Format

Share Document