scholarly journals Seismic Response Analysis of Concrete Lining Structure in Large Underground Powerhouse

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaowei Wang ◽  
Juntao Chen ◽  
Ming Xiao ◽  
Danqi Wu

Based on the dynamic damage constitutive model of concrete material and seismic rock-lining structure interaction analysis method, the seismic response of lining structure in large underground powerhouse is studied in this paper. In order to describe strain rate dependence and fatigue damage of concrete material under cyclic loading, a dynamic constitutive model for concrete lining considering tension and shear anisotropic damage is presented, and the evolution equations of damage variables are derived. The proposed model is of simple form and can be programmed into finite element procedure easily. In order to describe seismic interaction characteristics of the surrounding rock and lining, an explicit dynamic contact analysis method considering bond and damage characteristics of contact face between the surrounding rock and lining is proposed, and this method can integrate directly without iteration. The proposed method is applied to seismic stability calculation of Yingxiuwan Underground Powerhouse, results reveal that the amplitude and duration of input seismic wave determine the damage degree of lining structure, the damage zone of lining structure is mainly distributed in its arch, and the contact face damage has great influence on the stability of the lining structure.

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110726
Author(s):  
Dong An ◽  
Zheng Chen ◽  
Guangyao Cui

The objective of this paper is to optimize the selection of seismic ground motion intensity indexes in the seismic fortification of urban shallow-buried rectangular tunnels. This paper takes a shallow-buried rectangular tunnel in a city as the research object, uses ABAQUS to establish a finite-infinite element coupling model, and selects 70 typical seismic ground motions for dynamic calculation. Using dynamic time history analysis method to study the seismic response of tunnel lining structure in terms of internal force, minimum safety factor and strain energy, and analyze their correlation with 15 seismic ground motion parameters. Selecting the seismic ground motion parameters with strong correlation, good effectiveness, and high credibility for safety evaluation. The research results show that: Peak acceleration (PGA) has a weak correlation with the seismic response of tunnel lining structures, and PGA as an independent seismic ground motion intensity index has greater uncertainty in the seismic fortification of tunnels; Peak displacement (PGD), Root-mean-square velocity (RMSV), Root-mean-square displacement (RMSD), and Specific energy density (SED) can be used as independent seismic ground motion intensity index, The linear regression model is used to evaluate the safety of the lining structure, and finally the evaluation result is verified by the incremental dynamic analysis method (IDA), which shows that the evaluation result is accurate. The research results can provide reference for the preliminary design of seismic fortification of rectangular shallow tunnels.


2011 ◽  
Vol 138-139 ◽  
pp. 181-186
Author(s):  
Ren Qiang Xi ◽  
Xue Dong Jiang ◽  
Yun Song He ◽  
Shu Hao Ban

Owing to fluid characteristics of hydraulic structure seismic response, analysis method of this problem considering fluid-solid interaction is pointed out. And seismic response of vertical plate in the water was taken as an example to show how to solve this fluid-solid interaction system and analysis the features of it. In the analysis, effects of wave frequency and water depth were considered. The results indicate that incompressible fluid model based on Arbitrary Largrange Elurian description is enough to simulate motion of fluid domain and insure computing convergence in the analysis. It also shows that peak value of structure dynamic response is larger as the consideration of fluid-solid interaction. Water depth has great effect on fluid-solid interaction and has clear nonlinear feature.


2021 ◽  
Vol 943 (1) ◽  
pp. 012024
Author(s):  
L T Han ◽  
Y P Su ◽  
J W Chen ◽  
N Ge

Abstract To study the influence of soil-well bore-shaft tower interaction on the seismic response of the shaft tower. A numerical analysis model of rigid foundation (without considering the interaction of soil-well bore-shaft tower ) and II site considering soil-well bore-shaft tower interaction is established by the finite element analysis method. The mode period, tower layer displacement and inter-story displacement of shaft tower are analyzed. The results show that, compared with rigid foundation, considering the interaction of soil-well bore-shaft tower, the mode period of the system is prolonged, the tower layer displacement and inter-story displacement of the shaft tower is enlarged. In the engineering design of shaft tower, the influence of the soil-well bore-shaft tower interaction on the seismic response of the shaft tower cannot be ignored.


Sign in / Sign up

Export Citation Format

Share Document