motion parameters
Recently Published Documents


TOTAL DOCUMENTS

931
(FIVE YEARS 202)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 245 ◽  
pp. 110543
Author(s):  
Yubing Zhang ◽  
Yong Wang ◽  
Jiazhen Han ◽  
Guang Sun ◽  
Yudong Xie

Robotica ◽  
2022 ◽  
pp. 1-17
Author(s):  
Huipu Zhang ◽  
Manxin Wang ◽  
Haibin Lai ◽  
Junpeng Huang

Abstract The trajectory-planning method for a novel 4-degree-of-freedom high-speed parallel robot is studied herein. The robot’s motion mechanism adopts RR(SS)2 as branch chains and has a single moving platform structure. Compared with a double moving platform structure, the proposed parallel robot has better acceleration and deceleration performance since the mass of its moving platform is lighter. An inverse kinematics model of the mechanism is established, and the corresponding relationship between the motion parameters of the end-moving platform and the active arm with three end-motion laws is obtained, followed by the optimization of the motion laws by considering the motion laws’ duration and stability. A Lamé curve is used to transition the right-angled part of the traditional gate trajectory, and the parameters of the Lamé curve are optimized to achieve the shortest movement time and minimum acceleration peak. A method for solving Lamé curve trajectory interpolation points based on deduplication optimization is proposed, and a grasping frequency experiment is conducted on a robot prototype. Results show that the grasping frequency of the optimized Lamé curve prototype can be increased to 147 times/min, and its work efficiency is 54.7% higher than that obtained using the traditional Adept gate-shaped trajectory.


2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Jie Jia ◽  
Haoyang Lu ◽  
Xiaobo Li ◽  
Qian Chen

In order to study the nonlinear characteristics of self-excited aerodynamic forces of bluff body bridge section with the change of motion parameters, a numerical wind tunnel is established by the dynamic mesh technique of computational fluid dynamics (CFD). A state-by-state forced vibration method is used to identify the self-excited aerodynamic forces of single degree-of-freedom (DOF) heaving and pitching motion. Fast Fourier transform (FFT) is adopted to obtain frequency-domain data for analysis. The reliability of the obtained aerodynamic results is verified by wind tunnel tests. The results show that the high-order harmonic components are found in the self-excited aerodynamic forces of semiclosed box deck section, which are more significant in aerodynamic lift than in aerodynamic moment. The proportion of aerodynamic nonlinear components increases with amplitude. The effect of amplitude on the nonlinear components of heaving motion is generally higher than that of pitching motion, and aerodynamic moment is highly sensitive to the increase of vertical amplitude. The variation of the nonlinear components of the deck section with frequency is not a simple monotonic relationship, and there is a stationary point at 10 Hz frequency. The existence of wind attack angle makes the proportion of nonlinear components reach more than 30% and greatly increases the proportion of second harmonic. In addition, the high-order harmonic components, which are not integer multiples, are found at large amplitude and positive angle of attack.


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110726
Author(s):  
Dong An ◽  
Zheng Chen ◽  
Guangyao Cui

The objective of this paper is to optimize the selection of seismic ground motion intensity indexes in the seismic fortification of urban shallow-buried rectangular tunnels. This paper takes a shallow-buried rectangular tunnel in a city as the research object, uses ABAQUS to establish a finite-infinite element coupling model, and selects 70 typical seismic ground motions for dynamic calculation. Using dynamic time history analysis method to study the seismic response of tunnel lining structure in terms of internal force, minimum safety factor and strain energy, and analyze their correlation with 15 seismic ground motion parameters. Selecting the seismic ground motion parameters with strong correlation, good effectiveness, and high credibility for safety evaluation. The research results show that: Peak acceleration (PGA) has a weak correlation with the seismic response of tunnel lining structures, and PGA as an independent seismic ground motion intensity index has greater uncertainty in the seismic fortification of tunnels; Peak displacement (PGD), Root-mean-square velocity (RMSV), Root-mean-square displacement (RMSD), and Specific energy density (SED) can be used as independent seismic ground motion intensity index, The linear regression model is used to evaluate the safety of the lining structure, and finally the evaluation result is verified by the incremental dynamic analysis method (IDA), which shows that the evaluation result is accurate. The research results can provide reference for the preliminary design of seismic fortification of rectangular shallow tunnels.


2021 ◽  
Vol 6 (9 (114)) ◽  
pp. 32-46
Author(s):  
Yurii Podchashynskyi ◽  
Oksana Luhovykh ◽  
Vitaliy Tsyporenko ◽  
Valentyn Tsyporenko

The method and structural scheme of an information-measuring system for determining the parameters of objects' movements (technological equipment in the quarry for extracting block natural stone) have been proposed. A distinctive feature of time video sequences containing images of measured objects is their adaptation and adjustment in accordance with the intensity of movement and accuracy requirements for measurement results. Structural and software-algorithmic methods were also applied for improving the accuracy of measurements of motion parameters, namely: complexation of two measuring channels and exponential smoothing of digital references. One of the measuring channels is based on a digital video camera, the second is based on an accelerometer mounted on an object and two integrators. Exponential smoothing makes it possible to take into consideration the previous countdowns of movement parameters with weight coefficients. That ensures accounting for the existing patterns of movement of the object and reducing the errors when measuring the parameters of movement by (1.4...1.6) times. The resulting solutions have been implemented in the form of an information and measurement system. The technological process of extracting blocks of natural stone in the quarry was experimentally investigated using a diamond-rope installation. Based on the contactless measurement of motion parameters, it is possible to ensure control over this process and improve the quality of blocks made of natural stone. Based on the experimental study of measurement errors, recommendations were given for the selection of adaptive parameters of a video sequence, namely the size of images and the value of the inter-frame interval. In addition, methods for the software-algorithmic processing of measuring information were selected, specifically exponential smoothing and averaging the coordinates of the contour of an object, measured in 30 adjacent lines of the image


Author(s):  
Ju-Mi Hwang ◽  
Jeong-Won Bae ◽  
Eun-Ju Jung ◽  
Woo-Jin Lee ◽  
Woo-Sung Kwon

Although novaluron is an insect growth regulator with a low mammalian acute toxicity and a low risk to the environment and nontarget organisms, toxic effects of novaluron have been reported. However, no studies have yet evaluated the effect of novaluron on reproduction. Therefore, we examined the effects of novaluron on sperm functions. The spermatozoa of ICR mice were incubated with various concentrations of novaluron to induce capacitation. Then, sperm motion parameters and capacitation status were evaluated using CASA program and H33258/chlortetracycline staining. In addition, PKA activity and tyrosine phosphorylation were evaluated by Western blotting. After exposure, various sperm motion parameters were significantly decreased in a dose-dependent manner. The acrosome reaction was also significantly decreased in the high concentration groups. Sperm viability was significantly reduced at the highest concentration. In addition, PKA activity and tyrosine phosphorylation were also significantly altered. Thus, novaluron affects sperm viability, sperm motility, and motion kinematics during capacitation. Furthermore, it may promote the reduction in acrosome reactions. The physiological suppression of sperm function may depend on abnormal tyrosine phosphorylation via the alteration of PKA activity. Therefore, we suggest that it is necessary to consider reproductive toxicity when using novaluron as a pesticide.


2021 ◽  
Vol 242 ◽  
pp. 110061
Author(s):  
Pengcheng Gao ◽  
Qiaogao Huang ◽  
Guang Pan ◽  
Jiazhen Zhao

2021 ◽  
Vol 2131 (2) ◽  
pp. 022128
Author(s):  
I V Reshetnikova ◽  
S V Sokolov ◽  
A A Manin ◽  
M V Polyakova ◽  
M S Gerasimenko

Abstract Existing methods for processing satellite measurements are based on the use of either the least squares method in different versions, or with the known model of motion of an object – various modifications of the Kalman filter. At the same time, the Kalman approach is more accurate, since it takes into account the dynamics of the movement of the object and the history of estimates, but its significant drawback is the need for a priori knowledge of the equations of motion of the object. In this regard, a new approach is proposed to assess the navigation parameters of the object by satellite measurements. On the one hand, this approach takes into account the dynamic nature of motion parameters and the history of estimates, and on the other hand, free from restriction in the form of accurate knowledge of the equations of motion of an object. The effectiveness of the considered approach in comparison with the existing traditional methods of processing satellite measurements is confirmed by the results of numerical modeling.


Sign in / Sign up

Export Citation Format

Share Document