Robustness of polyisobutylene for friction coefficients between bearing surfaces of bolted joints

Author(s):  
Shinji Hashimura ◽  
Toshiumi Miki ◽  
Takefumi Otsu ◽  
Kyoichi Komatsu ◽  
Shota Inoue ◽  
...  

In bolted joints, clamp force must be accurately controlled to secure their reliability. However, the clamp force varies widely in each tightening because friction coefficients at thread surfaces and bearing surfaces vary in each tightening due to lubricants, configuration error of bolts, surface roughness, and surface hardness, among other things. In this study, we investigated the robustness of polyisobutylene and ISO VG46 machine oil during the tightening process for several parameters of tightening conditions. We especially focused on variations of the friction coefficient between bearing surfaces at an appropriate target clamp force of M8 bolt/nut assemblies and change rates of the friction coefficients from the middle to the end of the appropriate target clamp force. Results showed that the friction coefficients at the target clamp force varied widely if ISO VG46 machine oil was used as a lubricant. In contrast, the variations of the friction coefficients in which polyisobutylene was used for tightening were small. Results also showed that the friction coefficients invariably decreased about 20% from the middle to the end of the target clamp force if ISO VG46 machine oil was used for the lubricant. However, if polyisobutylene was used, the friction coefficients were almost constant for all tightening instances.

1999 ◽  
Vol 122 (1) ◽  
pp. 246-256 ◽  
Author(s):  
S. Wang ◽  
K. Komvopoulos

The apparent friction force and electric contact resistance at the magnetic head-disk interface were measured simultaneously for textured and untextured disks lubricated with perfluoropolyether films of different thicknesses. The initial stick time, representing the time between the application of a driving torque and the initiation of interfacial slip, was determined based on the initial rise of the apparent friction force and the abrupt increase of the electric contact resistance. Relatively thin lubricant films yielded very short initial stick times and low static friction coefficients. However, for a film thickness comparable to the equivalent surface roughness, relatively long initial stick times and high static friction coefficients were observed. The peak value of the apparent friction coefficient was low for thin lubricant films and increased gradually with the film thickness. The variations of the initial stick time, static friction coefficient, and peak friction coefficient with the lubricant film thickness and surface roughness are interpreted in the context of a new physical model of the lubricated interface. The model accounts for the lubricant coverage, effective shear area, saturation of interfacial cavities, limited meniscus effects, and the increase of the critical shear stress of thin liquid films due to the solid-like behavior exhibited at a state of increased molecular ordering. [S0742-4787(00)03101-5]


2005 ◽  
Vol 890 ◽  
Author(s):  
Sang Geun Bae ◽  
Yong Ki Cho ◽  
Kyoung Il Moon ◽  
Sang Gweon Kim ◽  
Sung Wan Kim

AbstractFor the better understanding of anti-wear properties of hard coating films, the effects of preferred orientation, surface roughness, and surface hardness on the tribological property of TiN and CrN films have been studied. TiN and CrN films were deposited by cathodic AIP (CAIP) with working temperatures of 350∼450°C, working pressures of 1∼5Pa, arc currents of 50∼90 A, and bias voltages of 30∼150V. The characteristics of microstructure and its effect on the friction coefficient were investigated with working conditions. The preferred orientation of the film was examined by XRD. The friction coefficient was determined using ball on disk tribometer. The preferred orientation of films was changed from (200) to (111) with decreasing working pressure and increasing bias voltage. It is reported that TiN coating with strong (111) orientation have better tribological property, but, in this study, although similar tendency was also found in TiN, the tribological property was increased with diminishing (111) orientation in CrN films. It is concluded in this study that the tribological property is not affected only by the orientation of the film, but it depends on the combined properties of surface roughness, surface hardness, and orientation of the film. The friction coefficients of TiN and CrN were 0.48∼0.52 and 0.49∼0.53, respectively.


2021 ◽  
Author(s):  
Huimin FANG ◽  
Liansen XIA ◽  
Qingping YU ◽  
Guangsheng ZHANG

Iron-based specimens with boronized layers were prepared by boriding at 800 ℃, 900 ℃ and 1000 ℃ for 3, 5, and 7 hours, respectively. The thickness, microstructure, surface roughness, friction, and wear performance were studied. Results showed that the process parameters such as temperature, the time of boriding have remarkable impact on the thickness of the boronized layer. Dual-phase was generated at 1000 ℃ which lead to increased brittleness, lower surface hardness, and decreased adhesion to the substrate. Compared with specimens boronized at 1000 ℃ and 800 ℃, the surface structure of the boronized layer of specimens boronized at 900 ℃ is denser and uniform, the wear track is not damaged. The average friction coefficient and mass loss by wear of specimens boronized at 900 °C are smaller than that of boronized at 1000 ℃ and 800 ℃, indicating that specimens borided at 900 ℃ behave excellent friction and wear performance.


2007 ◽  
Vol 33 (1) ◽  
pp. 31-42
Author(s):  
Brian Kane

Friction is important in tree care operations; climbers encounter friction when ascending into, working in, and descending out of a tree. Twelve commonly used climbing ropes were tested on cambium saver rings made of three different materials to determine rope on ring static and kinetic friction coefficients. All ropes were tested before any field use. In addition, two ropes were tested after they had been used in the field for 2 years and were evaluated to determine the effect of rope wear on friction. Friction coefficients varied among ropes and ring materials, and surface roughness of ring material was the best predictor of friction coefficient. Used ropes exhibited higher friction coefficients than new ropes and, in most cases, superseded the influence of surface roughness of cambium saver rings. Simple physical models were developed to illustrate how friction coefficients can affect different aspects of tree climbing. There are important implications of these results for further studies on rope friction as it relates to reducing climber fatigue.


Author(s):  
Wei Wang ◽  
Qingli Wang ◽  
Shuai Zheng ◽  
Xiaowei Liu ◽  
Haiping Liu

Bolted joints are widely used in the auto industry, energy field and Construction, and so on. Due to the wide use of the bolted joints, the degradation of bolts has significant effect on the performance of a whole machine. Under transversal vibration, the self-loosening of bolted joints, which is the biggest form of failure ranked only second to fatigue failure [1], will happen, due to the cyclic shear load. This paper is to study the mechanism of bolted joints’ self-loosening. Aiming at analyzing the self-loosening mechanism of bolted joints under vibration, a three dimensional FEA model of bolted joints, which had taken thread into consideration, was built with the application of APDL, and the preload was applied on the bolted joints by dropping temperature, then FEA transient analysis of the bolted joints under transverse cyclic excitation was conducted. Effect of transverse cyclic excitation’s amplitude, initial preload, thread and bearing friction coefficients, the joints’ surface friction coefficient, the thread pitch and the hole clearance on self-loosening was investigated. The results show that the complete thread slip occurs prior to the complete bearing surface slip under transverse vibration; the smaller amplitude, the smaller thread pitch and the smaller hole clearance is, and the greater initial preload, thread and bearing friction coefficients are, the more difficult self-loosening is to happen; the joints’ surface friction coefficient has little relationship with self-loosening, however, the larger joints’ surface friction coefficient makes the needed shearing force, which induces the transversal vibration, larger. These are of great significance for understanding of fasteners’ self-loosening and designing of bolted joints’ anti-loosening.


Author(s):  
Yasuo Fujioka ◽  
Tomotsugu Sakai

It is common knowledge that a bolt is apt to loosen due to slippage between the contact surfaces of joined parts. Loosening tests using real parts enable precise scrutiny of real phenomena under the influence of multiple factors such as slip distance, surface roughness, and coefficient friction. However, estimating the influence of the individual factors is very difficult because the friction forces of real contact surfaces are compiled based on variations in friction coefficients, meaning friction is not stable. Therefore, the effects of factors were investigated using Finite Element Analysis (FEA) to control friction coefficients. The procedures were as follows. Assuming a joined structure consisting of a bolt, nut, and washer, bolt axial tension was generated through constant movement of a washer in the bolt’s axial direction, following which the washer was constantly vibrated in one direction transverse to the bolt axis. This vibration generated displacements equivalent to the degree of slippage between the two clamped parts. During vibration, the rotating angles of the bolt and the contact pressure of the threads and bearing surfaces were calculated. The results were as follows. The vibrating displacements of a washer have considerable influence on the rotational loosening of a bolt. In cases where there was only minor displacement of the washer vibrations, the rotational loosening angle rapidly decreased, although the loosening did not cease completely. Therefore, the magnitude of what is called “critical slip” was not confirmed under the conditions of this study. In addition, the friction coefficient has a significant influence on the rotational loosening of a bolt. When the respective friction coefficient values of the threads and bearing surfaces are not balanced, rotational loosening cannot continue. Surface roughness readily affects contact pressure, so it tends to make the contact pressure localized. In particular, high-pressure areas were affected by several projections set on the threads. However, under those conditions the rotational loosening did not differ greatly from the results of the fine surface models subject to the same vibrating amplitude and friction coefficient. Consequently, the localized contact pressure had little evident effect on loosening. Above all, FEA reproduced the loosening of the bolt, and the reference made in this analysis is useful.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 611
Author(s):  
Yeon-Woong Choe ◽  
Sang-Bo Sim ◽  
Yeon-Moon Choo

In general, this new equation is significant for designing and operating a pipeline to predict flow discharge. In order to predict the flow discharge, accurate determination of the flow loss due to pipe friction is very important. However, existing pipe friction coefficient equations have difficulties in obtaining key variables or those only applicable to pipes with specific conditions. Thus, this study develops a new equation for predicting pipe friction coefficients using statistically based entropy concepts, which are currently being used in various fields. The parameters in the proposed equation can be easily obtained and are easy to estimate. Existing formulas for calculating pipe friction coefficient requires the friction head loss and Reynolds number. Unlike existing formulas, the proposed equation only requires pipe specifications, entropy value and average velocity. The developed equation can predict the friction coefficient by using the well-known entropy, the mean velocity and the pipe specifications. The comparison results with the Nikuradse’s experimental data show that the R2 and RMSE values were 0.998 and 0.000366 in smooth pipe, and 0.979 to 0.994 or 0.000399 to 0.000436 in rough pipe, and the discrepancy ratio analysis results show that the accuracy of both results in smooth and rough pipes is very close to zero. The proposed equation will enable the easier estimation of flow rates.


Author(s):  
Santosh Kumar ◽  
Vimal Edachery ◽  
Swamybabu Velpula ◽  
Avinash Govindaraju ◽  
Sounak K. Choudhury ◽  
...  

Clinching is an economical sheet joining technique that does not require any consumables. Besides, after its usage, the joints can be recycled without much difficulty, making clinching one of the most sustainable and eco-friendly manufacturing processes and a topic of high research potential. In this work, the influence of surface roughness on the load-bearing capacity (strength) of joints made by the mechanical clinching method in cross-tensile and lap-shear configuration is explored. Additionally, a correlating mathematical model is established between the joint strength and its surface parameters, namely, friction coefficient and wrap angle, based on the belt friction phenomenon. This correlation also explains the generally observed higher strength in lap-shear configuration compared to cross-tensile in clinching joints. From the mathematical correlation, through friction by increasing the average surface roughness, it is possible to increase the strength of the joint. The quality of the thus produced joint is analyzed by cross-sectional examination and comparison with simulation results. Experimentally, it is shown that an increment of >50% in the joint strength is achieved in lap-shear configuration by modifying the surface roughness and increasing the friction coefficient at the joint interface. Further, the same surface modification does not significantly affect the strength in cross-tensile configuration.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 962
Author(s):  
Andrzej Marczuk ◽  
Vasily Sysuev ◽  
Alexey Aleshkin ◽  
Petr Savinykh ◽  
Nikolay Turubanov ◽  
...  

Mixing is one of the most commonly used processes in food, animal feed, chemical, cosmetic, etc., industries. It is supposed to provide high-quality homogenous, nutritious mixtures. To provide appropriate mixing of materials while maintaining the process high efficiency and low energy consumption it is crucial to explore and describe the material flow caused by the movement of mixing elements and the contact between particles. The process of mixing is also affected by structural features of the machine components and the mixing chamber, speed of mixing, and properties of the mixed materials, such as the size of particles, moisture, friction coefficients. Thus, modeling of the phenomena that accompany the process of mixing using the above-listed parameters is indispensable for appropriate implementation of the process. The paper provides theoretical power calculations that take into account the material speed change, the impact of the material friction coefficient on the screw steel surface and the impact of the friction coefficient on the material, taking into account the loading height of the mixing chamber and the chamber loading value. Dependencies between the mixer power and the product degree of fineness, rotational speed of screw friction coefficients, the number of windings per length unit, and width of the screw tape have been presented on the basis of a developed model. It has been found that power increases along with an increase in the value of these parameters. Verification of the theoretical model indicated consistence of the predicted power demand with the power demand determined in tests performed on a real object for values of the assumed, effective loading, which was 65–75%.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350033 ◽  
Author(s):  
ŞERAFETTIN EKINCI ◽  
AHMET AKDEMIR ◽  
HUMAR KAHRAMANLI

Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.


Sign in / Sign up

Export Citation Format

Share Document