wear properties
Recently Published Documents


TOTAL DOCUMENTS

3327
(FIVE YEARS 872)

H-INDEX

69
(FIVE YEARS 12)

2022 ◽  
Vol 148 ◽  
pp. 107640
Author(s):  
Yameng Shi ◽  
Jingbin Li ◽  
Jie Zhang ◽  
Baoqin Wen ◽  
liqiao Li ◽  
...  

2022 ◽  
Author(s):  
SURESHKUMAR P ◽  
suresh kumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
M. Ravichandran ◽  
...  

Abstract The present research study investigates the Mechanical, Physical, and Tribological properties of powder metallurgy (PM) produced AA6063 alloy reinforced with silicon nitride (Si3N4) and copper nitrate (CuN2O6). Incorporation of Si3N4 & CuN2O6 reinforcement in matrix material ranged from 6 to 12 % Si3N4 in a 6-step interval and 2 to 6 %CuN2O6 in a two-step interval. The characterizations were made on the PM-produced specimens using OM, EDS, XRD, and Hardness. The reinforcement particles were uniformly distributed, which was attributed to a homogeneous mixer of matrix and reinforcements. The test findings show that as the reinforcing percentage of the ceramic and inorganic compound increases, properties such as hardness and density rise considerably and monolithically. The existence of phases such as Si3N4 and CuN2O6 reinforcement in the AA6063 matrix was ensured by X-ray diffraction. The hardness of AA6063/12%Si3N4/6%CuN2O6 increased by 88% over the base alloy due to a mismatch in thermal expansion between the Al matrix and reinforcement, which causes massive internal stress, causing the aluminium matrix to plastically deform to accommodate the reduced volume expansion of Si3N4 and CuN2O6 particles. The dry sliding wear test was determined using the Pin-on-Disc method, and the results show that the composite is more wear-resistant. An orthogonal array and analysis of variance were utilized to evaluate the solution, including parameters using the Taguchi robust design technique. The weight percentage of the Si3N4/CuN2O6 compound and the relationship between weight % of reinforcement and applied load had the most significant impact on composite wear resistance. The produced composite's wear morphology was studied using images from a scanning electron microscope and energy dispersive spectroscopy.


Author(s):  
Li Xiao ◽  
Yingqiang Xu ◽  
Zhiyong Chen

Abstract To improve the fretting wear performance of 18CrNi4A steel, DLC, TiAlN and DLC/TiAlN coatings were deposited on the surface of carburized 18CrNi4A steel, respectively. The microstructure morphologies, chemical compositions, and mechanical properties of these coatings were evaluated. The fretting tribological properties of pad/flat contact pairs for carburized 18CrNi4A steel, DLC, TiAlN and DLC/TiAlN coatings were investigated in different lubricant environments including dry sliding and #RIPP 7254 aviation grease. The results show that DLC, TiAlN and DLC/TiAlN coatings deposited on the carburized 18CrNi4A steel surface can improve surface roughness, hardness, fracture toughness and resistance to plastic deformation. DLC, TiAlN and DLC/TiAlN coatings deposited on the surface of carburized 18CrNi4A steel can make the surface of the substrate have excellent fretting wear properties. DLC and DLC/TiAlN coatings have lower coefficient of friction and better fretting wear resistance than TiAlN coatings in dry sliding condition, and DLC/TiAlN coatings have the lowest wear rate in #RIPP 7254 grease lubrication condition. In addition, the wear mechanisms of carburized 18CrNi4A steel, DLC, TiAlN and DLC/TiAlN coatings in dry sliding and #RIPP 7254 aviation grease conditions were analyzed.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 557
Author(s):  
Pengjia Guo ◽  
Shengqiang Ma ◽  
Ming Jiao ◽  
Ping Lv ◽  
Jiandong Xing ◽  
...  

In order to investigate the effect of Cr content on the microstructures and oxidation wear properties of high-boron high-speed steel (HBHSS), so as to explore oxidation wear resistant materials (e.g., hot rollers), a scanning electron microscope, an X-ray diffractometer, an electron probe X-ray microanalysis and an oxidation wear test at elevated temperatures were employed to investigate worn surfaces and worn layers. The results showed that the addition of Cr resulted in the transformation of martensite into ferrite and pearlite, while the size of the grid morphology of borides in HBHSSs was refined. After oxidation wear, oxide scales were formed and the high-temperature oxidation wear resistance of HBHSSs was gradually improved with increased additions of Cr. Meanwhile, an interaction between temperature and load in HBHSSs during oxidation wear occurred, and the temperature had more influence on the oxidation wear properties of HBHSSs. SEM observations indicated that a uniform and compact oxide film of HBHSSs in the worn surface at elevated temperatures was generated on the worn surface, and the addition of Cr also reduced the thickness of oxides and inhibited the spallation of worn layers, which was attributed to improvements in microhardness and oxidation resistance of the matrix in HBHSSs. A synergistic effect of temperature and load in HBHSSs with various Cr additions may dominate the oxidation wear process and the formation and spallation of oxide films.


2022 ◽  
Author(s):  
Anis Adilah Abu Talib ◽  
Aidah Jumahat ◽  
Mohammad Jawaid ◽  
Napisah Sapiai ◽  
Rajini Nagarajan

2022 ◽  
Vol 327 ◽  
pp. 71-81
Author(s):  
Yun Xin Cui ◽  
Han Xiao ◽  
Chi Xiong ◽  
Rong Feng Zhou ◽  
Zu Lai Li ◽  
...  

The semi-solid extruded CuSn10P1 alloy bushings were homogenization annealed. The effects of annealing process on the hardness and wear properties of bushings were researched. The results show the Brinell hardness increases firstly and then decreases with the increase of annealing temperature and annealing time. With the annealing temperature increasing, the grinding loss rate and friction factor decrease firstly and then increase. At the annealing time of 120 min, the grinding loss rate decreases from 7% at the annealing temperature of 450 °C to 6% at 500 °C, and then increases from 6% at 500 °C to 12% at 600 °C. The friction factor decreases from 0.54 to 0.48 and then increases to 0.83. At the annealing temperature of 500 °C, the grinding loss rate decreases from 11% at the annealing time of 60 min to 6% at 120 min, and then increases to 15% at 150 min. The friction factor decreases from 0.67 to 0.48 and then increases to 0.72. The best wear performance and Brinell hardness can be obtained at annealing temperature of 500 °C for 120 min.


2022 ◽  
Vol 327 ◽  
pp. 197-206
Author(s):  
Pietro Tonolini ◽  
Annalisa Pola ◽  
Lorenzo Montesano ◽  
Marialaura Tocci ◽  
Marcello Gelfi ◽  
...  

In this paper, wear properties of samples manufactured using thixocasting were compared with those of components obtained using low-pressure die-casting and additive manufacturing in order to assess the relationship between material performance and production technologies, both conventional and innovative. The investigated items were made with AlSi7Mg alloy. First, microstructural analysis and hardness measurements were carried out. Subsequently, pin-on-disk wear tests were performed. Wear behavior of the samples was studied considering both coefficient of friction and wear rate, while the damage mechanism was analyzed by observation of the worn paths using scanning electron microscope, correlating the behavior to the specific microstructure. In addition, the effect of selected heat-treated conditions, relevant for real applications, on wear properties was also evaluated.


2022 ◽  
pp. 1-10
Author(s):  
X W Chen ◽  
P Ren ◽  
D F Zhang ◽  
J Hu ◽  
C Wu ◽  
...  

In this study, ceramic coatings were prepared on the surface of TC4 titanium alloy by micro-arc oxidation (MAO). The morphology, element distribution and phase composition of MAO coatings were analyzed by SEM, EDS, XRD and other analytical methods. The effect of hexagonal boron nitride(h-BN) doping on wear resistance and corrosion resistance of micro-arc oxidation layer was studied. The results show that the coating is mainly composed of rutile TiO2, anatase TiO2 and a small amount of h-BN. Furthermore, the composite coating containing h-BN was less porous than particle-free coating. The test results show that h-BN doping slightly affects the hardness of the MAO coating, and it is helpful in improving the thickness, corrosion resistance and wear resistance of the coatings. When the amount of h-BN is 3 g/L, the corrosion current density of the coating is the smallest; When the addition of h-BN is 1.5 g/L, the friction coefficient of the coating is the smallest. The wear mechanism was adhesive wear, accompanied by slight abrasive wear.


2022 ◽  
Vol 12 (2) ◽  
pp. 599
Author(s):  
Jian Wang ◽  
Tianxia Liu

The homemade soot capture device was used to burn Fischer-Tropsch synthetic diesel (F-T diesel) in order to simulate the combustion of F-T diesel in the engine and collect its soot (F-T DS, FS). The zinc-iron hydrotalcite (ZnFe-LDH) and the composite materials of FS and ZnFe-LDH (F-T DS/ZnFe-LDH, FS/ZnFe-LDH) were prepared by hydrothermal synthesis, and the similarities and differences in tribological characteristics of the above three lubricating materials such as 10# white oil (10# WO) lubricant additives were investigated. FS is an aggregation composed of amorphous carbon and graphite microcrystals. ZnFe-LDH is mainly composed of nanosheets, Zn, and Fe hydroxide particles, with a high degree of crystallization, while FS/ZnFe-LDH is a “sandwich layer” composed of nanosheets and soot particles. Because of the addition of cetyltrimethylammonium bromide and the grafting of a long carbon chain lipophilic group in the preparation process, FS/ZnFe-LDH has better anti-wear properties than the FS and ZnFe-LDH Effect. When FS/ZnFe-LDH is added at 0.2 wt.%, the average friction coefficient (AFC) and average wears scar diameter (AWSD) are at their lowest. Compared with pure 10# WO, the minimum values of AFC and AWSD have dropped by 36.84% and 22.58%, respectively. XPS analysis of the wear scar surface shows that when ZnFe-LDH and FS/ZnFe-LDH are used as lubricating additives of 10# WO, together with the organic matter in the white oil and the iron element in the friction pair, tribochemistry occurs under the combined action of the adsorption force and the tribochemical reaction, a friction protection film containing four elements of C, O, Fe, and Zn is formed on the surface of the wear scar, which effectively reduces the wear and reduces the friction coefficient.


Sign in / Sign up

Export Citation Format

Share Document