scholarly journals Antagonistic activity of endophytic actinobacteria from native potatoes (Solanum tuberosum subsp. tuberosum L.) against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Natalia Padilla-Gálvez ◽  
Paola Luengo-Uribe ◽  
Sandra Mancilla ◽  
Amandine Maurin ◽  
Claudia Torres ◽  
...  

Abstract Background The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. Result The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. Conclusions We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.

2020 ◽  
Vol 8 (8) ◽  
pp. 1100 ◽  
Author(s):  
Wenping Zhang ◽  
Qingqing Luo ◽  
Yiyin Zhang ◽  
Xinghui Fan ◽  
Tian Ye ◽  
...  

Quorum sensing (QS) is a cell density-dependent mechanism that regulates the expression of specific genes in microbial cells. Quorum quenching (QQ) is a promising strategy for attenuating pathogenicity by interfering with the QS system of pathogens. N-Acyl-homoserine lactones (AHLs) act as signaling molecules in many Gram-negative bacterial pathogens and have received wide attention. In this study, a novel, efficient AHL-degrading bacterium, Acinetobacter sp. strain XN-10, was isolated from agricultural contaminated soil and evaluated for its degradation efficiency and potential use against QS-mediated pathogens. Strain XN-10 could effectively degrade N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), N-hexanoyl-L-homoserine lactone (C6HSL), N-(3-oxododecanoyl)-L-homoserine lactone (3OC12HSL), and N-(3-oxooctanoyl)-L-homoserine lactone (3OC8HSL), which all belong to the AHL family. Analysis of AHL metabolic products by gas chromatography–mass spectrometry (GC-MS) led to the identification of N-cyclohexyl-propanamide, and pentanoic acid, 4-methyl, methyl ester as the main intermediate metabolites, revealing that AHL could be degraded by hydrolysis and dehydroxylation. All intermediates were transitory and faded away without any non-cleavable metabolites at the end of the experiment. Furthermore, strain XN-10 significantly attenuated the pathogenicity of Pectobacterium carotovorum subsp. carotovorum (Pcc) to suppress tissue maceration in carrots, potatoes, and Chinese cabbage. Taken together, our results shed light on the QQ mechanism of a novel AHL-degrading bacterial isolate, and they provide useful information which show potential for biocontrol of infectious diseases caused by AHL-dependent bacterial pathogens.


2021 ◽  
Vol 2 (1) ◽  
pp. 53-60
Author(s):  
Durojaye Hammed Abiodun ◽  
Owoeye Tolulope Abisola

Potato (Solanum tuberosum L.) is a tuberous crop from the Sola-naceae family which is a source of starch and food to many in Nige-ria, however, its production is being hampered in field and storage by bacterial pathogen which causes rot of the stored tubers. To this end, the study aimed at screening potatoes from different stores within Ibadan for the evaluation and diversity of bacteria pathogens responsible for rot in potatoes. Damaged stored potato samples were collected from different locations in Ibadan for studies, these samples were isolated for bacterial pathogen and characterized bio-chemically and observed under the microscope for identification. Three genera of bacteria were observed to be responsible for potato rot in the study and they include Pectobacterium carotovorum, Pseu-domonas syringae and Ralstonia solanacearum. Of all the isolated bacteria, Pectobacterium carotovorum has the highest occurrence with a frequency of 60%, while Pseudomonas syringae has a fre-quency of 33% and Ralstonia solanacearum has a frequency of 27%. The pathogenicity of the isolates were tested and this revealed that Pectobacterium carotovorum is the most virulent with a severity score of 4.3, while Ralstonia solanacearum follows with a score of 3.3 and a score of 2.7 was recorded for Pseudomonas syringae, while the control had a score of 0. The diversity and differences shown in the isolated bacteria indicated that potato rot is a serious disease which is caused by different bacteria and need an integrated ap-proach for its control from the field of harvesting to the storage house.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
M’hamed BENADA ◽  
Boualem BOUMAAZA ◽  
Sofiane BOUDALIA ◽  
Omar KHALADI

Abstract Background The development of ecofriendly tools against plant diseases is an important issue in crop protection. Screening and selection process of bacterial strains antagonists of 2 pathogenic bacterial species that limit very important crops, Erwinia amylovora, the causal agent of the fire blight disease, and Pectobacterium carotovorum, the causal agent of bacterial potato soft rot, were reported. Bacterial colonies were isolated from different ecological niches, where both pathogens were found: rhizosphere of potato tubers and fruits and leaves of pear trees from the northwest region of Algeria. Direct and indirect confrontation tests against strains of E. amylovora and P. carotovorum were performed. Results Results showed a significant antagonistic activity against both phytopathogenic species, using direct confrontation method and supernatants of cultures (p<0.005). In vitro assays showed growth inhibitions of both phytopathogenic species. Furthermore, results revealed that the strains of S. plymuthica had a better inhibitory effect than the strains of P. fluorescens against both pathogens. In vivo results on immature pear fruits showed a significant decrease in the progression of the fire blight symptoms, with a variation in the infection index from one antagonistic strain to another between 31.3 and 50%, and slice of potato showed total inhibition of the pathogen (P. carotovorum) by the antagonistic strains of Serratia plymuthica (p<0.005). Conclusion This study highlighted that the effective bacteria did not show any infection signs towards plant tissue, and considered as a potential strategy to limit the fire blight and soft rot diseases.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2667-2667 ◽  
Author(s):  
N. Zlatković ◽  
A. Prokić ◽  
K. Gašić ◽  
N. Kuzmanović ◽  
M. Ivanović ◽  
...  

2011 ◽  
Vol 62 (4) ◽  
pp. 1411-1417 ◽  
Author(s):  
Meriam Terta ◽  
Souad Azelmat ◽  
Rajaa Ait M’hand ◽  
El Hassan Achbani ◽  
Mustapha Barakate ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document