scholarly journals Behavior of triplex steel containing different aluminum content

2017 ◽  
Vol 17 (1) ◽  
pp. 34-43 ◽  
Author(s):  
M. I. Masoud ◽  
M. Tashkandi ◽  
J. Al-Jarrah ◽  
A. I. Z. Farahat

Abstract Medium-carbon alloy steels containing different aluminum contents were hot forged by 95% reduction at 1200°C followed by air cooling. Optical and scanning electron microscopes were used to investigate the morphologies of the different phases present. An austentizing process followed by water quenching (after hot forging) was carried out to obtain different hardness values. The intensity of the different planes was investigated using X-ray diffraction. The mechanical properties were characterized using tensile and hardness tests. Optical and scanning electron micrographs revealed a great effect of aluminum content on the steel properties. A matrix of bainite and pearlite and traces of ferrite was revealed for hot forged steel type 1 containing 1% Al. Steel type 2 containing 2% Al showed a matrix of pearlite and ferrite with the absence of bainite. The hardness increased with increasing the temperature to a maximum value then decreased for steel containing 1 and 2% aluminum. After austentizing at 925°C, the maximum hardness of 649Hv was recorded for hot forged steel type 2 of 2% aluminum, while steel type 1 of 1% aluminum showed a maximum hardness of 531Hv after austentizing at 1000°C. Thus, the maximum hardness of hot forged steels decreased with increasing aluminum content. In addition, the maximum tensile and yield strength were decreased by increasing the aluminum content in the steel. The changes in microstructure and mechanical properties of these steels could be explained by the effect of aluminum as a ferrite forming element.

Author(s):  
Bommanna K ◽  
Radha H R ◽  
Yuvaraja Naik ◽  
Mahendra K V ◽  
A Hareesh

This paper reports the dispersion of nanoclay in vinylester using co-rotating twin screw extrusion and ultrasonication for preparing nanoclay/vinylester gel coat. Two sets MMT/vinylester specimens, namely Type 1 and Type 2 were prepared for comparative studies. While Type 1 specimens were prepared using ultrasonication only, Type 2 specimens were prepared using both ultrasonication and twin-screw extrusion. Type 2 specimens showed lower levels of nanoclay intercalation and higher levels of exfoliation.  By using the MMT/vinylester gel coat so prepared by the two different routes, MMT/vinylester/glass specimens were fabricated and tested for mechanical properties. Type 2 based nanocomposite specimens showed greater values of ultimate tensile strength, flexural strength, interlaminar shear strength and impact strength. Scanning Electron Micrographs (SEM) of tensile fractured Type 2 based specimens showed less agglomeration of nanoclay than that of Type 1 based specimens.


2014 ◽  
Vol 1611 ◽  
pp. 95-104 ◽  
Author(s):  
Nadira Mathura ◽  
Duncan Cree ◽  
Ryan P. Mulligan

ABSTRACTIn many tropical countries coconut (coir) fiber production is a major source of income for rural communities. The Caribbean has an abundance of coconuts but research into utilizing its by-products is limited. Environmentally friendly coir fibers are natural polymers generally discarded as waste material in this region. Research has shown that coir fiber from other parts of the world has successfully been recycled. This paper therefore investigates the mechanical properties of Caribbean coir fiber for potential applications in civil engineering.Approximately four hundred fibers were randomly taken from a coir fiber stack and subjected to retting in both distilled and saline water media. The mechanical properties of both the retted and unretted coir fibers were evaluated at weekly increments for a period of 3 months. Tensile strength test, x-ray diffraction analysis and scanning electron micrographs were used to assess trends and relationships between fiber gauge lengths, diameter, tensile strength and Young’s modulus. Diameters ranged between 0.11 mm-0.46 mm, while fiber samples were no longer than 250 mm in length. The tensile strength and strain at break decreased as the gauge length increased for both unretted and retted fibers. The opposite occurred for the relationship between the gauge length and Young’s modulus. Additionally, the tensile strength and modulus decreased as the fiber diameter increased. Neither distilled nor saline water improved the coir fiber’s crystalline index. Scanning electron micrographs qualitatively assessed fiber surfaces and captured necking and microfibril degradation at the fractured ends.The analysis revealed that the tensile strength, modulus, strain at break and crystallinity properties of the Caribbean coir fibers were comparable to commercially available coir fiber which are currently being used in many building applications.


2021 ◽  
Vol 877 ◽  
pp. 21-26
Author(s):  
Shuai Yuan ◽  
Lin Yuan ◽  
Chen Gao ◽  
Xue Fei Hu ◽  
Chin San Wu ◽  
...  

Biodegradable composite from polycaprolactone (PCL) and Graphene/zinc oxide (Graphene/ZnO) is studied. The Graphene/ZnO content is at 0.5%, 1.5% in PCL. Neat PCL and composites were characterized by microstructure, mechanical properties and thermal properties. Scanning electron micrographs show that the additive has agglomerated in PCL/Graphene/ZnO. Agglomeration of the filler results in reduced tensile properties of the composite. The result from XRD indicates Graphene/ZnO can improve the crystallinity of PCL. According to the results of buried soil test and analysis, Graphene/ZnO can reduce the biodegradation rate of PCL and make the material more durable. This new biodegradable composite material can be used as a new environmentally friendly material.


Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 213
Author(s):  
M. Hossain ◽  
Pat Hutchings

A new species of glycerid polychaete, Glycera sheikhmujibi, is described from the saltmarsh on the central coast of Bangladesh. The species is identified based on morphological characteristics using both a light microscope and scanning electron microscope (SEM). The species is characterized by the presence of three distinct types of proboscideal papillae: type 1 papillae (conical with three transverse ridges), type 2 (conical with a straight, median, longitudinal ridge), and type 3 (round, shorter, and broader, with a straight, median, longitudinal ridge). It has a Y-shaped aileron with gently incised triangular base, almost equal-size digitiform noto- and neuropodial lobes in the mid-body, and long ventral cirri at the posterior end. The new species is compared with its related species, previously described from the Bay of Bengal region. A key to all these species is provided.


2005 ◽  
Vol 287 ◽  
pp. 63-68 ◽  
Author(s):  
Jae Jun Kim ◽  
Sang Heum Youn ◽  
M.J. Cho ◽  
H.T. Shin ◽  
Jeong Bae Yoon ◽  
...  

To improve the mechanical properties of concretes containing recycled aggregates, pozzolanic materials were used to decrease the porosity of the recycled aggregates. These pozzolanic materials were adhered on the surface of recycled aggregates and closed the open pores so that the water absorption was decreased 1~2% as the amount of adsorption was increased. Compressive strength of cement mortars and concretes using surface treated recycled aggregates reaches above 95% of the strength of its natural counterparts. Investigation of the microstructures using the scanning electron micrographs showed the formation of dense interface after the adsorption treatment of pozzolanics to recycled aggregates.


2018 ◽  
Vol MA2018-01 (32) ◽  
pp. 1930-1930
Author(s):  
Tatsuya Kawada

The materials and the structure of solid oxide fuel cells are designed to avoid thermo-mechanical damages under various operation conditions. However, inherent risk of chemo-mechanical failures are still not fully understood. This paper aims to review the recent works related to this topic, and to address some issues which have not been widely recognized. The coupling of chemistry and mechanics are classified into four types, i.e. (1) chemically driven strain, (2) chemically modified mechanical properties, (3) mechanically driven chemical reactions, and (4) mechanically modified chemical (physical) properties. Since chemical energies are much larger than mechanical energy accommodated in SOFC, the former two types (type(1) and (2)) of chemo-mechanical coupling have been recognized as more important than the others, and have been studied intensively. An example of type-1 phenomena is chemical expansion of mixed conducting oxides with e.g. (La,Sr)(Co,Fe)O3 cathode, LaCrO3 based interconnect, and CeO2 based or (La,Sr)(Ga,Mg,Co)O3 electrolytes. Since the transient behavior as well as steady state distribution of oxygen potential inside the constituent solids is essential to know the effect of the chemical strain, Terada et al. developed a computer code “SIMUDEL” of an FEM-based calculation of oxygen potential. This code considers “chemical capacitance” due to nonstoichiometry of the materials to treat the transient responses, and the results of the calculation can be transported into some of major commercial programs for structure analysis. Volume change of a nickel cermet anode is also an important feature of type-1 coupling which must be considered in determining fabrication and operation processes. The electrode shrinks on reduction and expands on re-oxidation as expected from the lattice size of the metal and the oxide. However, under certain conditions, a porous cermet was found to “shrink” upon oxidation. It took place only during light re-oxidation around 400C. Under this condition the formation of NiO was not obvious from XRD, whereas weight gain was observed by thermo-gravimetry. Careful observation of the microstructure of a porous Ni revealed that, upon shrinkage, the particle-to-particle separation changed partly due to the neck growth between the particles and to the change of the connection angle of the particles. Further study is underway to elucidate the detailed mechanism of the oxidation-induced shrinkage. The change of mechanical properties such as elastic moduli and fracture strength are also dependent on defect concentration and its motion in the lattice (type-2 coupling). Young’s modulus of nonstoichiometric oxides show dependences not only on temperature but also on pO2 through the change of defect concentration. Also, domain boundary shift of ferroelastic phase of LSCF was found to be correlated with the defect concentration. As is discussed for the anomaly of Young’s modulus of YSZ around 400˚C, the motion of oxide ion vacancies may also have correlation with the ferroelastic strain observed with Sc and Ce doped ZrO2 electrolyte above 300˚C. Another interesting type-2 coupling is with the lightly oxidized Ni cermet electrode. It was found that the creep rate of Ni-YSZ cermet at 400˚C was dramatically increased when oxygen-containing gas was introduced. This may be by a correlated mechanism with the above mentioned oxidation induced shrinkage. Several reports, including those from our group, have been published on the effect of mechanical stress on defect formation (type-3 coupling) of nonstoichiometric oxides determined by experiments or by calculation. As is expected from thermodynamic consideration, the experimentally determined effect was not large, e.g. 1G Pa stress was equivalent to 1/5 order of magnitude shift of chemical potential of oxygen for nonstoichiometry of LSCF. Similarly, only minor effect on a practical system was reported for type-4 coupling. However, those phenomena can have significant effect on long-term stability if cation mobility and their driving force are modified at a strained interfaces or grain boundaries.


2011 ◽  
Vol 374-377 ◽  
pp. 170-173
Author(s):  
Li Min Tai

Through the graft copolymerization of LLDPE and the AA-MMA prepolymer by reactive extrusion on the single-screw extruder, the LLPE-g-AA-MMA was prepared and used as compatibilizer for starch/PE blends, and then the compatibilization effect was investigated. The results exhibited that the addition of this compatibilizer substantially improved the mechanical properties, especially the tensile strength. Scanning electron micrographs of the blend specimens also supported the above observations.


2015 ◽  
Vol 1101 ◽  
pp. 75-78 ◽  
Author(s):  
Bo Ya Zhang ◽  
Xing He ◽  
Kai Yu Xu ◽  
Tian Ling Bu

Most of the carbon foams’ preparation is conducted under either high temperature or high pressure which consumes much energy. Aimed at this problem, we proposed a novel preparation technology which utilized the albumen as the foaming agent under normal temperature and pressure. The carbon foams had a bulk density of between 0.38 and 0.44 g/cm3. Analysis of scanning electron micrographs indicated that the cells had spherical cavity, small transom, and ligament which connected spherical cavity and provided high mechanical properties. The compressive strengths ranged from 0.4 to 2.1MPa and the thermal conductivity stayed still when the content of the meso-carbon micro-beads (MCMB) varied between 0 and 10%. It is one of our method’s features that the content of MCMB has litter effect on the thermal conductivity of the carbon foams.


Biologia ◽  
2009 ◽  
Vol 64 (6) ◽  
Author(s):  
Tülay Akcin

AbstractThe seed coat morphology of 10 Campanula species from Turkey, 3 of which are endemic, was studied using scanning electron microscopy. Characteristics of the seeds and their surface morphology were described and compared. Two different types were described based on seed surface features. The Type 1 seed surface was characterized by a reticulate pattern; only C. Olympica belonged to this type. The Type 2 seed surface had a striate testa and was the most common type. It included C. Lyrata subsp. lyrata, C. rapunculoides L. subsp. rapunculoides, C. glomerata L. subsp. hispida, C. involucrata, C. saxonorum, C. persicifolia, C. latiloba subsp. latiloba, C. lactiflora and C. Rapunculus L. var. lambertiana. However, some differences among these species were determined on the basis of their seed surface features at the microstructural level. These features were evaluated as possibly consistent parameters in the delimination of the Campanula taxa studied.


Sign in / Sign up

Export Citation Format

Share Document