A post-punching shear model for column–slab connections for progressive collapse analyses

2021 ◽  
pp. 1-19
Author(s):  
Nsikak W. Ulaeto ◽  
Juan Sagaseta
2018 ◽  
Vol 11 (2) ◽  
pp. 432-454
Author(s):  
D. F. A. SANTOS ◽  
A. F. LIMA NETO ◽  
M. P. FERREIRA

Abstract Punching is a possible failure mode for slender footings and it may lead a structure to ruin through progressive collapse. Although footing present different geometric characteristics, their punching shear design is based on the empirical methods used for flat slabs. This paper uses experimental results from 216 tests to evaluate the performance of design code recommendations presented by ACI 318 (2014), ABNT NBR 6118 (2014) and Eurocode 2 (2010) to estimate the punching shear resistance of reinforced concrete footings. Great dispersion between theoretical and experimental results was observed, being evident that the test system affects the punching shear capacity of footings. The more complex method proposed by Eurocode 2 resulted in a better correlation with experimental results.


2021 ◽  
Vol 7 (7) ◽  
pp. 1244-1263
Author(s):  
R. Shivashankar ◽  
S. Anaswara

In the present paper, the interference effects on bearing capacity of two and three closely spaced strip footings resting on granular bed overlying clay are being studied. A simple analytical model is proposed to predict the load-carrying capacity and the interference factor of an interfered footing, when adjacent strip footings are optimally placed on the surface of a Granular Bed (GB) overlying clay and both the footings are simultaneously loaded. A punching shear failure mechanism is envisaged in the analytical model. The load-carrying capacity of the footing is taken as the sum of total shearing resistances along the two vertical planes through the edges of the strip footing in the upper granular layer and the load-carrying capacity of the soft clay beneath the GB. Insights gained from finite element simulations are used to develop the new modified punching shear model for interfering footing. Bearing capacity can be easily calculated by using the proposed punching shear model for interfering footing. The analytical model is validated with numerical analyses and previous experimental results and found to be in reasonably good agreement. The influence of different parameters such as granular bed thickness, width of footing, number of footings are carried out in this study. Doi: 10.28991/cej-2021-03091723 Full Text: PDF


2014 ◽  
Vol 638-640 ◽  
pp. 1445-1448
Author(s):  
Hui Zhong Xue ◽  
Hong Guan ◽  
Yi Li

To investigate progressive collapse behavior of reinforced concrete (RC) flat plate structures, a reliable and efficient numerical approach is developed in this study using spring connection modelling. This connection unit aims to simulate complicate punching shear behavior at critical regions surrounding the columns. Five springs are used as the connection elements: two for flexural and integrity steel bars and three for concrete contributions. The flexural and integrity steel bars embedded in the columns are modeled explicitly, which enables the model to present the structural behavior post punching shear failure. Bending and shear actions are represented by two concrete springs. The third concrete spring is assigned axial action property to restrain two end nodes of the connection on the model. In particular, the punching shear spring controls the connection unit when punching shear failure occurs. To apply the connection unit, the regions of slab-column connections are partitioned from the slab regions according to the critical shear surfaces. Then the connection unit links two corresponding nodes on the two edges formed from the partition. A physical experiment of a RC flat plate substructure under progressive collapse is simulated. Result comparison demonstrates that the numerical model has the capability to capture the structural behavior in progressive collapse. However, further improvement of the modelling technique is necessary to enhance numerical accuracy.


2018 ◽  
Vol 35 (1) ◽  
pp. 469-483 ◽  
Author(s):  
Chuanteng Huang ◽  
Shuang Pu ◽  
Binbin Ding
Keyword(s):  

At present, the current legislative and regulatory documents do not contain a clear and unambiguous answer to the question, what buildings and structures should be designed resistant to progressive collapse. In this regard, the analysis of the legal and regulatory requirements of the need for calculations to prevent the progressive collapse of buildings and structures due to hypothetical or suspected local destruction is presented. The main legislative requirements of technical regulation in the field of ensuring the mechanical safety of buildings and structures, as well as the requirements of regulatory documents regarding the design of the protection of building and structures against progressive collapse are considered. The analysis of the fundamental principles features of the calculation for the structural protection against progressive collapse is given. Some issues discussed by the professional community in the direction of possible ways of solving the actual problems of the presented problem are considered. The conclusion is made about the need for further dialogue of the professional community on the development of a common position on the protection of buildings and structures from progressive collapse, which should be reflected in the legislative and regulatory requirements.


Sign in / Sign up

Export Citation Format

Share Document