scholarly journals Elimination and Backward Selection of Features (P-Value Technique) In Prediction of Heart Disease by Using Machine Learning Algorithms

Author(s):  
Ritu Aggrawal, Saurabh Pal

Background: Early speculation of cardiovascular disease can help determine the lifestyle change options of high-risk patients, thereby reducing difficulties. We propose a coronary heart disease data set analysis technique to predict people’s risk of danger based on people’s clinically determined history. The methods introduced may be integrated into multiple uses, such for developing decision support system, developing a risk management network, and help for experts and clinical staff. Methods: We employed the Framingham Heart study dataset, which is publicly available Kaggle, to train several machine learning classifiers such as logistic regression (LR), K-nearest neighbor (KNN), Naïve Bayes (NB), decision tree (DT), random forest (RF) and gradient boosting classifier (GBC) for disease prediction. The p-value method has been used for feature elimination, and the selected features have been incorporated for further prediction. Various thresholds are used with different classifiers to make predictions. In order to estimating the precision of the classifiers, ROC curve, confusion matrix and AUC value are considered for model verification. The performance of the six classifiers is used for comparison to predict chronic heart disease (CHD). Results: After applying the p-value backward elimination statistical method on the 10-year CHD data set, 6 significant features were selected from 14 features with p <0.5. In the performance of machine learning classifiers, GBC has the highest accuracy score, which is 87.61%. Conclusions: Statistical methods, such as the combination of p-value backward elimination method and machine learning classifiers, thereby improving the accuracy of the classifier and shortening the running time of the machine.

2021 ◽  
Vol 11 (7) ◽  
pp. 3130
Author(s):  
Janka Kabathova ◽  
Martin Drlik

Early and precisely predicting the students’ dropout based on available educational data belongs to the widespread research topic of the learning analytics research field. Despite the amount of already realized research, the progress is not significant and persists on all educational data levels. Even though various features have already been researched, there is still an open question, which features can be considered appropriate for different machine learning classifiers applied to the typical scarce set of educational data at the e-learning course level. Therefore, the main goal of the research is to emphasize the importance of the data understanding, data gathering phase, stress the limitations of the available datasets of educational data, compare the performance of several machine learning classifiers, and show that also a limited set of features, which are available for teachers in the e-learning course, can predict student’s dropout with sufficient accuracy if the performance metrics are thoroughly considered. The data collected from four academic years were analyzed. The features selected in this study proved to be applicable in predicting course completers and non-completers. The prediction accuracy varied between 77 and 93% on unseen data from the next academic year. In addition to the frequently used performance metrics, the comparison of machine learning classifiers homogeneity was analyzed to overcome the impact of the limited size of the dataset on obtained high values of performance metrics. The results showed that several machine learning algorithms could be successfully applied to a scarce dataset of educational data. Simultaneously, classification performance metrics should be thoroughly considered before deciding to deploy the best performance classification model to predict potential dropout cases and design beneficial intervention mechanisms.


Data Science in healthcare is a innovative and capable for industry implementing the data science applications. Data analytics is recent science in to discover the medical data set to explore and discover the disease. It’s a beginning attempt to identify the disease with the help of large amount of medical dataset. Using this data science methodology, it makes the user to find their disease without the help of health care centres. Healthcare and data science are often linked through finances as the industry attempts to reduce its expenses with the help of large amounts of data. Data science and medicine are rapidly developing, and it is important that they advance together. Health care information is very effective in the society. In a human life day to day heart disease had increased. Based on the heart disease to monitor different factors in human body to analyse and prevent the heart disease. To classify the factors using the machine learning algorithms and to predict the disease is major part. Major part of involves machine level based supervised learning algorithm such as SVM, Naviebayes, Decision Trees and Random forest.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245909
Author(s):  
Furqan Rustam ◽  
Madiha Khalid ◽  
Waqar Aslam ◽  
Vaibhav Rupapara ◽  
Arif Mehmood ◽  
...  

The spread of Covid-19 has resulted in worldwide health concerns. Social media is increasingly used to share news and opinions about it. A realistic assessment of the situation is necessary to utilize resources optimally and appropriately. In this research, we perform Covid-19 tweets sentiment analysis using a supervised machine learning approach. Identification of Covid-19 sentiments from tweets would allow informed decisions for better handling the current pandemic situation. The used dataset is extracted from Twitter using IDs as provided by the IEEE data port. Tweets are extracted by an in-house built crawler that uses the Tweepy library. The dataset is cleaned using the preprocessing techniques and sentiments are extracted using the TextBlob library. The contribution of this work is the performance evaluation of various machine learning classifiers using our proposed feature set. This set is formed by concatenating the bag-of-words and the term frequency-inverse document frequency. Tweets are classified as positive, neutral, or negative. Performance of classifiers is evaluated on the accuracy, precision, recall, and F1 score. For completeness, further investigation is made on the dataset using the Long Short-Term Memory (LSTM) architecture of the deep learning model. The results show that Extra Trees Classifiers outperform all other models by achieving a 0.93 accuracy score using our proposed concatenated features set. The LSTM achieves low accuracy as compared to machine learning classifiers. To demonstrate the effectiveness of our proposed feature set, the results are compared with the Vader sentiment analysis technique based on the GloVe feature extraction approach.


2021 ◽  
Vol 50 (8) ◽  
pp. 2479-2497
Author(s):  
Buvana M. ◽  
Muthumayil K.

One of the most symptomatic diseases is COVID-19. Early and precise physiological measurement-based prediction of breathing will minimize the risk of COVID-19 by a reasonable distance from anyone; wearing a mask, cleanliness, medication, balanced diet, and if not well stay safe at home. To evaluate the collected datasets of COVID-19 prediction, five machine learning classifiers were used: Nave Bayes, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbour (KNN), and Decision Tree. COVID-19 datasets from the Repository were combined and re-examined to remove incomplete entries, and a total of 2500 cases were utilized in this study. Features of fever, body pain, runny nose, difficulty in breathing, shore throat, and nasal congestion, are considered to be the most important differences between patients who have COVID-19s and those who do not. We exhibit the prediction functionality of five machine learning classifiers. A publicly available data set was used to train and assess the model. With an overall accuracy of 99.88 percent, the ensemble model is performed commendably. When compared to the existing methods and studies, the proposed model is performed better. As a result, the model presented is trustworthy and can be used to screen COVID-19 patients timely, efficiently.


10.2196/17478 ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. e17478 ◽  
Author(s):  
Shyam Visweswaran ◽  
Jason B Colditz ◽  
Patrick O’Halloran ◽  
Na-Rae Han ◽  
Sanya B Taneja ◽  
...  

Background Twitter presents a valuable and relevant social media platform to study the prevalence of information and sentiment on vaping that may be useful for public health surveillance. Machine learning classifiers that identify vaping-relevant tweets and characterize sentiments in them can underpin a Twitter-based vaping surveillance system. Compared with traditional machine learning classifiers that are reliant on annotations that are expensive to obtain, deep learning classifiers offer the advantage of requiring fewer annotated tweets by leveraging the large numbers of readily available unannotated tweets. Objective This study aims to derive and evaluate traditional and deep learning classifiers that can identify tweets relevant to vaping, tweets of a commercial nature, and tweets with provape sentiments. Methods We continuously collected tweets that matched vaping-related keywords over 2 months from August 2018 to October 2018. From this data set of tweets, a set of 4000 tweets was selected, and each tweet was manually annotated for relevance (vape relevant or not), commercial nature (commercial or not), and sentiment (provape or not). Using the annotated data, we derived traditional classifiers that included logistic regression, random forest, linear support vector machine, and multinomial naive Bayes. In addition, using the annotated data set and a larger unannotated data set of tweets, we derived deep learning classifiers that included a convolutional neural network (CNN), long short-term memory (LSTM) network, LSTM-CNN network, and bidirectional LSTM (BiLSTM) network. The unannotated tweet data were used to derive word vectors that deep learning classifiers can leverage to improve performance. Results LSTM-CNN performed the best with the highest area under the receiver operating characteristic curve (AUC) of 0.96 (95% CI 0.93-0.98) for relevance, all deep learning classifiers including LSTM-CNN performed better than the traditional classifiers with an AUC of 0.99 (95% CI 0.98-0.99) for distinguishing commercial from noncommercial tweets, and BiLSTM performed the best with an AUC of 0.83 (95% CI 0.78-0.89) for provape sentiment. Overall, LSTM-CNN performed the best across all 3 classification tasks. Conclusions We derived and evaluated traditional machine learning and deep learning classifiers to identify vaping-related relevant, commercial, and provape tweets. Overall, deep learning classifiers such as LSTM-CNN had superior performance and had the added advantage of requiring no preprocessing. The performance of these classifiers supports the development of a vaping surveillance system.


2021 ◽  
Author(s):  
Shatha Ghareeb ◽  
Abir Jaafar Hussain ◽  
Dhiya Al-Jumeily ◽  
Wasiq Khan ◽  
Rawaa Al-Jumeily ◽  
...  

Abstract In this paper, a novel application of machine learning algorithms is presented for student levelling. In multicultural countries such as UAE, there are various education curriculums where the sector of private schools and quality assurance is supervising various private schools for many nationalities. As there are various education curriculums in United Arab Emirates, specifically Abu Dhabi, to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. Every curriculum follows different education methods such as assessment techniques, reassessment rules, and exam boards. Currently, students who transfer to other curriculums are not correctly placed to their appropriate year group as a result of the start and end dates of each academic year as well as due to their date of birth, in which students who are either younger or older for that year group can create gaps in their learning and performance. In addition, pupils’ academic journeys are not stored which create a gap for the schools to track their learning process. In this paper, we propose a computational framework applicable in multicultural countries such as United Arab Emirates in which multi-education systems are implemented. Machine Learning are used to provide the appropriate student’ level aiding shoolds to provide a smooth transition when assigning students to their year groups and provide levelling and differentiation information of pupils for a smooth transition between one education curriculums to another, in which retrieval of their progress is possible. For classification and discriminant analysis of pupils levelling, three machine learning classifiers are utilised including random forest classifier, Artificial Neural Network, and combined classifiers. The simulation results indicated that the proposed machine learning classifiers generated effective performance in terms of accuracy.


Sign in / Sign up

Export Citation Format

Share Document