scholarly journals Antimicrobial resistance in wastewater of Yangon Region, Myanmar from one health perspective

Author(s):  
Mya Thandar ◽  
Hla Hla Win ◽  
Khin May Oo ◽  
Moh Moh Kyi ◽  
Myat Su Khine

Background: Antibiotic resistance is an emerging concern both for public and animal health globally and also threatens the achievements of modern medicine. This study aimed to generate the baseline data of drug resistance pathogens in diversity of waste water of Yangon Region, Myanmar.Methods: A cross-sectional descriptive study was conducted from January to July 2021. A total of forty samples of wastewater (two samples each from ten hospitals, one sample each from five poultry farms, five aquacultures and ten community drains) were aseptically collected, transported in ice box and processed following standard procedure for bacterial isolation and detection of antibiotic sensitivity pattern. Identification and antibiotic susceptibility testing of isolated colonies were done by VITEK 2 compact system.Results: A total of 106 bacterial isolates were identified and 50% were from hospitals, 31.1%were from community drains and 9.4% each from poultry farms and aquacultures. The most frequently identified isolates were Enterobacteriaceae (65.1%) followed by Acinetobacter species (11.3%) and Pseudomonas species (8.5%). Among the isolated organisms, ESBL producers and Carbapenemase producer were 7.5% and 0.9% respectively. ESBL producers (62.5%) were resistant to cefuroxime, cefuroxime-axetil, cefotaxime, ceftriaxone and minocycline. Carbapenem resistant Enterobacteriaceae was multidrug resistant but sensitive to amikacin, tigecycline and cefaclor.Conclusions: The proportion of antibiotic resistant bacteria are higher in hospital wastewater than other sites. Hence proper treatment plant for hospital wastewater should be installed and need to mitigate antibiotic resistance with a ‘one-health’ approach.   

Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 495
Author(s):  
Masateru Nishiyama ◽  
Susan Praise ◽  
Keiichi Tsurumaki ◽  
Hiroaki Baba ◽  
Hajime Kanamori ◽  
...  

There is increasing attention toward factors that potentially contribute to antibiotic resistance (AR), as well as an interest in exploring the emergence and occurrence of antibiotic resistance bacteria (ARB). We monitored six ARBs that cause hospital outbreaks in wastewater influent to highlight the presence of these ARBs in the general population. We analyzed wastewater samples from a municipal wastewater treatment plant (MWWTP) and hospital wastewater (HW) for six species of ARB: Carbapenem-resistant Enterobacteria (CARBA), extended-spectrum β-lactamase producing Enterobacteria (ESBL), multidrug-resistant Acinetobacter (MDRA), multidrug-resistant Pseudomonas aeruginosa (MDRP), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE). We registered a high percentage of ARBs in MWWTP samples (>66%) for all ARBs except for MDRP, indicating a high prevalence in the population. Percentages in HW samples were low (<78%), and no VRE was detected throughout the study. CARBA and ESBL were detected in all wastewater samples, whereas MDRA and MRSA had a high abundance. This result demonstrated the functionality of using raw wastewater at MWWTP to monitor the presence and extent of ARB in healthy populations. This kind of surveillance will contribute to strengthening the efforts toward reducing ARBs through the detection of ARBs to which the general population is exposed.


2018 ◽  
Vol 7 (1) ◽  
pp. 28-40
Author(s):  
Bikram Gautam ◽  
Rameshwar Adhikari

Wastewater treatment plant is a potential reservoir contributing to the evolution and spread of heavy metal and antibiotic resistant bacteria. The pollutants such as biocides, antibiotics, heavy metals are to be feared for as they have been known to evoke resistance in microorganisms in such polluted environment. The aim of this study was to the isolate bacteria from the treated wastewater and assess the resistance pattern of the isolates against antibiotics and heavy metals. Grab sampling was performed from April to June 2017, from the treated effluent from the secondary treatment plant. To assess the resistance pattern for antibiotic(s) and heavy metal(s), antibiotic susceptibility test and minimum inhibitory concentration by cup well method were performed respectively. Staphylococcus aureus, Enterococcus faecalis, Citrobacter freundii, Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, P. vulgaris, Salmonella Typhi, Pseudomonas aeruginosa were isolated. Multi drug and heavy metal resistant isolates were screened. Fisher’s exact test revealed that there is a significant association (p< 0.001) between antibiotic resistance pattern and resistance patterns at dilution of 2500 g/L (25%). Cramer’s V test revealed that the effect size of antibiotic resistance pattern and heavy metal resistance pattern at dilution 2500 g/L is medium. P. aeruginosa was able to resist the metal concentration up to 10000 g/L (100%) dilution of Fe++. Heavy metal resistant bacteria can be safely used to lower chemical concentration in the environment once their harmful genes are edited, knocked etc. so that risks of evoking antibiotic resistance could be minimized. 


Author(s):  
Meesha Singh ◽  
Rupsha Karmakar ◽  
Sayak Ganguli ◽  
Mahashweta Mitra Ghosh

Aims: This study aims at comparative identification of antibiotic resistance patterns in bacteria isolated from samples collected from rural environment (LS) and urban environments (SS). Metagenomic profiling gave us insights into the microbial abundance of the two samples. This study focused on culture-based methods for complete identification of antibiotic resistant isolates and estimation of comparative antibiotic resistance among the two samples. Study Design: Untreated medical waste and anthropogenic waste disposal can lead to the propagation of different antibiotic resistant strains in wastewater environments both in urban and rural set ups which provide an insight towards this study approach mentioned in the methodology segment. Place and Duration of Study: Sewer system of a medical facility located in Purulia, India was the collection site for liquid sludge. Solid sludge and associated wastewater were collected in vicinity of a large urban medical facility from central Kolkata, India. Methodology: Physico-chemical properties were analyzed followed by microbiological and biochemical characterization. The antibiotic resistance patterns were determined by Kirby-Bauer disc diffusion assay. Potent multidrug resistant isolates were identified using 16srRNA gene amplification followed by Phylogenetic profiling, using CLC Genomics workbench. Results: We observed maximum resistance in an E. coli isolate which was resistant up to 22 antibiotics. Combined data for resistance from urban and rural samples were found to exhibit 83.9% resistance to beta lactams, 85.7% to macrolides, 44.2% to fluoroquinolones, 50% to glycopeptides and cephalosporins, 35.7 % to carbapenems and sulfonamides, 28.5 % to tetracycline, and 23.8 % to aminoglycosides. Conclusion: The high prevalence of antibiotic-resistant bacteria harbouring diverse resistance traits across samples indicated towards probable horizontal gene transfer across environmental niches. This study can prove to be useful to understand and map the patterns of resistance and stringently apply the counter measures related to public health practices.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3269 ◽  
Author(s):  
Jess A. Millar ◽  
Rahul Raghavan

We explored the bacterial diversity of untreated sewage influent samples of a wastewater treatment plant in Tucson, AZ and discovered that Arcobacter cryaerophilus, an emerging human pathogen of animal origin, was the most dominant bacterium. The other highly prevalent bacteria were members of the phyla Bacteroidetes and Firmicutes, which are major constituents of human gut microbiome, indicating that bacteria of human and animal origin intermingle in sewage. By assembling a near-complete genome of A. cryaerophilus, we show that the bacterium has accumulated a large number of antibiotic resistance genes (ARGs) probably enabling it to thrive in the wastewater. We also determined that a majority of ARGs was being expressed in sewage, suggestive of trace levels of antibiotics or other stresses that could act as a selective force that amplifies multidrug resistant bacteria in municipal sewage. Because all bacteria are not eliminated even after several rounds of wastewater treatment, ARGs in sewage could affect public health due to their potential to contaminate environmental water.


2018 ◽  
Vol 285 (1876) ◽  
pp. 20180332 ◽  
Author(s):  
Emily K. Rousham ◽  
Leanne Unicomb ◽  
Mohammad Aminul Islam

Antibiotic resistance (ABR) is recognized as a One Health challenge because of the rapid emergence and dissemination of resistant bacteria and genes among humans, animals and the environment on a global scale. However, there is a paucity of research assessing ABR contemporaneously in humans, animals and the environment in low-resource settings. This critical review seeks to identify the extent of One Health research on ABR in low- and middle-income countries (LMICs). Existing research has highlighted hotspots for environmental contamination; food-animal production systems that are likely to harbour reservoirs or promote transmission of ABR as well as high and increasing human rates of colonization with ABR commensal bacteria such as Escherichia coli . However, very few studies have integrated all three components of the One Health spectrum to understand the dynamics of transmission and the prevalence of community-acquired resistance in humans and animals. Microbiological, epidemiological and social science research is needed at community and population levels across the One Health spectrum in order to fill the large gaps in knowledge of ABR in low-resource settings.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3449
Author(s):  
Cristina-Mirabela Gaşpar ◽  
Ludovic Toma Cziszter ◽  
Cristian Florin Lăzărescu ◽  
Ioan Ţibru ◽  
Marius Pentea ◽  
...  

This study aimed to compare the antibiotic resistance levels of the indicator bacteria Escherichia coli in wastewater samples collected from two hospitals and two urban communities. Antimicrobial susceptibility testing was performed on 81 E. coli isolates (47 from hospitals and 34 from communities) using the disc diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) methodology. Ten antibiotics from nine different classes were chosen. The strains isolated from the community wastewater, compared to those from the hospital wastewater, were not resistant to gentamicin (p = 0.03), but they showed a significantly higher susceptibility—increased exposure to ceftazidime (p = 0.001). Multidrug resistance was observed in 85.11% of the hospital wastewater isolates and 73.53% of the community isolates (p > 0.05). The frequency of the presumed carbapenemase-producing E. coli was higher among the community isolates (76.47% compared to 68.09%) (p > 0.05), whereas the frequency of the presumed extended-spectrum beta-lactamase (ESBL)-producing E. coli was higher among the hospital isolates (21.28% compared to 5.88%) (p > 0.05). The antibiotic resistance rates were high in both the hospital and community wastewaters, with very few significant differences between them, so the community outlet might be a source of resistant bacteria that is at least as important as the well-recognised hospitals.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiurong Guo ◽  
Nan Tang ◽  
Hui Lei ◽  
Qi Fang ◽  
Li Liu ◽  
...  

Controlling antibiotic resistance genes (ARGs) is a worldwide intervention to ensure global health. Hospital wastewater is the main pollution source of antibiotic-resistant bacteria and ARGs in the environment. Expanding our knowledge on the bacterial composition of hospital wastewater could help us to control infections in hospitals and decrease pathogen release into the environment. In this study, a high-throughput sequencing-based metagenomic approach was applied to investigate the community composition of bacteria and ARGs in untreated wastewater from three different types of hospitals [the general hospital, traditional Chinese medicine (TCM) hospital, and stomatology hospital]. In total, 130 phyla and 2,554 genera were identified from the microbiota of the wastewaters, with significantly different bacterial community compositions among the three hospitals. Total ARG analysis using the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Resistance Database (CARD) revealed that the microbiota in the wastewaters from the three hospitals harbored different types and percentage of ARGs, and their composition was specific to the hospital type based on the correlation analysis between species and ARG abundance, some ARGs contributed to different bacterial genera with various relationships in different hospitals. In summary, our findings demonstrated a widespread occurrence of ARGs and ARG-harboring microbiota in untreated wastewaters of different hospitals, suggesting that protection measures should be applied to prevent human infections. Concurrently, hospital wastewater should be treated more specifically for the removal of pathogens before its discharge into the urban sewage system.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2851 ◽  
Author(s):  
Magdalena Pazda ◽  
Magda Rybicka ◽  
Stefan Stolte ◽  
Krzysztof Piotr Bielawski ◽  
Piotr Stepnowski ◽  
...  

Antibiotic resistance is a growing problem worldwide. The emergence and rapid spread of antibiotic resistance determinants have led to an increasing concern about the potential environmental and public health endangering. Wastewater treatment plants (WWTPs) play an important role in this phenomenon since antibacterial drugs introduced into wastewater can exert a selection pressure on antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Therefore, WWTPs are perceived as the main sources of antibiotics, ARB and ARG spread in various environmental components. Furthermore, technological processes used in WWTPs and its exploitation conditions may influence the effectiveness of antibiotic resistance determinants’ elimination. The main aim of the present study was to compare the occurrence of selected tetracycline and sulfonamide resistance genes in raw influent and final effluent samples from two WWTPs different in terms of size and applied biological wastewater treatment processes (conventional activated sludge (AS)-based and combining a conventional AS-based method with constructed wetlands (CWs)). All 13 selected ARGs were detected in raw influent and final effluent samples from both WWTPs. Significant ARG enrichment, especially for tet(B, K, L, O) and sulIII genes, was observed in conventional WWTP. The obtained data did not show a clear trend in seasonal fluctuations in the abundance of selected resistance genes in wastewaters.


2015 ◽  
Vol 119 (6) ◽  
pp. 1527-1540 ◽  
Author(s):  
D.O. Santoro ◽  
A.M. Cardoso ◽  
F.H. Coutinho ◽  
L.H. Pinto ◽  
R.P. Vieira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document