environmental water
Recently Published Documents


TOTAL DOCUMENTS

2783
(FIVE YEARS 708)

H-INDEX

88
(FIVE YEARS 16)

Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Xia Hong ◽  
Yin Cui ◽  
Ming Li ◽  
Yifan Xia ◽  
Daolin Du ◽  
...  

A magnetic-based immunoassay (MBI) combined with biotin-streptavidin amplification was proposed for butyl benzyl phthalate (BBP) investigation and risk assessment. The values of LOD (limit of detection, IC10) and IC50 were 0.57 ng/mL and 119.61 ng/mL, with a detection range of 0.57–24977.71 ng/mL for MBI. The specificity, accuracy and precision are well demonstrated. A total of 36 environmental water samples of urban sewage from Zhenjiang, China, were collected and assessed for BBP contamination. The results show that BBP-positive levels ranged from 2.47 to 89.21 ng/mL, with a positive rate of 77.8%. The health effects of BBP in the urban sewage were within a controllable range, and the ambient severity for health (ASI) was below 1.49. The highest value of AS for ecology (ASII) was 7.43, which indicates a potential harm to ecology. The entropy value of risk quotient was below 100, the highest being 59.47, which poses a low risk to the environment and ecology, indicating that there is a need to strengthen BBP controls. The non-carcinogenic risk of BBP exposure from drinking water was higher for females than that for males, and the non-carcinogenic risk from drinking-water and bathing pathways was negligible. This study could provide an alternative method for detecting BBP and essential information for controlling BBP contamination.


2022 ◽  
Vol 9 ◽  
Author(s):  
Zhe Jiao ◽  
Jialing Yang ◽  
Xiaojuan Long ◽  
Yingfang Lu ◽  
Zongning Guo ◽  
...  

Here, we developed a rapid, visual and double-checked Logic Gate detection platform for detection of pathogenic microorganisms by aggregation-induced emission luminogens (AIEgens) in combination with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated (Cas). DNA light-up AIEgens (1,1,2,2-tetrakis[4-(2-bromo-ethoxy) phenyl]ethene, TTAPE) was non-emissive but the emission was turned on in the presence of large amount of DNA produced by recombinase polymerase amplification (RPA). When CRISPR/Cas12a was added, all long-stranded DNA were cut leading to the emission quenched. Thus, a method that can directly observe the emission changes with the naked eye has been successfully constructed. The detection is speedy within only 20 min, and has strong specificity to the target. The result can be judged by Logic Gate. Only when the output signal is (1,0), does it represent the presence of pathogenic microorganisms in the test object. Finally, the method was applied to the detect pathogenic microorganisms in environmental water samples, which proved that this method has high selectivity, specificity and applicability for the detection of pathogenic microorganisms in environmental water samples.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 579
Author(s):  
Paweł Kościelniak ◽  
Marek Dębosz ◽  
Marcin Wieczorek ◽  
Jan Migdalski ◽  
Monika Szufla ◽  
...  

A solid-contact ion-selective electrode was developed for detecting potassium in environmental water. Two versions of a stable cadmium acylhydrazone-based metal organic framework, i.e., JUK-13 and JUK-13_H2O, were used for the construction of the mediation layer. The potentiometric and electrochemical characterizations of the proposed electrodes were carried out. The implementation of the JUK-13_H2O interlayer is shown to improve the potentiometric response and stability of measured potential. The electrode exhibits a good Nernstian slope (56.30 mV/decade) in the concentration range from 10−5 to 10−1 mol L−1 with a detection limit of 2.1 µmol L−1. The long-term potential stability shows a small drift of 0.32 mV h−1 over 67 h. The electrode displays a good selectivity comparable to ion-selective electrodes with the same membrane. The K-JUK-13_H2O-ISE was successfully applied for the determination of potassium in three certified reference materials of environmental water with great precision (RSD < 3.00%) and accuracy (RE < 3.00%).


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 208
Author(s):  
Matthew J. Colloff ◽  
Jamie Pittock

The Murray–Darling Basin Plan is a $AU 13 billion program to return water from irrigation use to the environment. Central to the success of the Plan, commenced in 2012, is the implementation of an Environmentally Sustainable Level of Take (ESLT) and a Sustainable Diversion Limit (SDL) on the volume of water that can be taken for consumptive use. Under the enabling legislation, the Water Act (2007), the ESLT and SDL must be set by the “best available science.” In 2009, the volume of water to maintain wetlands and rivers of the Basin was estimated at 3000–7600 GL per year. Since then, there has been a steady step-down in this volume to 2075 GL year due to repeated policy adjustments, including “supply measures projects,” building of infrastructure to obtain the same environmental outcomes with less water. Since implementation of the Plan, return of water to the environment is falling far short of targets. The gap between the volume required to maintain wetlands and rivers and what is available is increasing with climate change and other risks, but the Plan makes no direct allowance for climate change. We present policy options that address the need to adapt to less water and re-frame the decision context from contestation between water for irrigation versus the environment. Options include best use of water for adaptation and structural adjustment packages for irrigation communities integrated with environmental triage of those wetlands likely to transition to dryland ecosystems under climate change.


2022 ◽  
Author(s):  
Stefano Barchiesi ◽  
Antonio Camacho ◽  
Eva Hernández ◽  
Anis Guelmami ◽  
Flavio Monti ◽  
...  

Abstract Although environmental flow regime assessments are becoming increasingly holistic, they rarely provoke water managers to enact the adaptive water reallocation mechanisms required to secure environmental water for wetlands. The conditions that cause science-based environmental flow assessments to succeed or fail in informing the management of environmental water requirements remain unclear. To begin to resolve these conditions, we used process tracing to deconstruct the sequence of activities required to manage environmental water in four case studies of seasonally ponding wetlands in Mediterranean and Mesoamerican watersheds. We hypothesized that, when the flexibility and equitability of the socioeconomic system do not match the complexity of the biophysical system, this leads to a failure of managers to integrate scientific guidance in their allocation of environmental water. Diagnostic evidence gathered indicates that science-management partnerships are essential to align institutional flexibility and socioeconomic equitability with the system’s ecohydrological complexity, and thus move from determination to reallocation of environmental water. These results confirm that institutions e.g., river basin organizations need to be supplemented by motivated actors with experience and skill to negotiate allocation and adaptive management of environmental water. These institutional-actor synergies are likely to be especially important in water scarce regions when the need to accommodate extreme hydrological conditions is not met by national governance capacity. We conclude by focusing on benefit sharing as a means to better describe the conditions for successful science-based environmental flow assessments that realize productive efficiency in environmental water allocation i.e., recognition of multiple values for both people and ecosystems.


Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Patrícia S. Peixoto ◽  
Pedro H. Carvalho ◽  
Ana Machado ◽  
Luisa Barreiros ◽  
Adriano A. Bordalo ◽  
...  

Antibiotic resistance is a major health concern of the 21st century. The misuse of antibiotics over the years has led to their increasing presence in the environment, particularly in water resources, which can exacerbate the transmission of resistance genes and facilitate the emergence of resistant microorganisms. The objective of the present work is to develop a chemosensor for screening of sulfonamides in environmental waters, targeting sulfamethoxazole as the model analyte. The methodology was based on the retention of sulfamethoxazole in disks containing polystyrene divinylbenzene sulfonated sorbent particles and reaction with p-dimethylaminocinnamaldehyde, followed by colorimetric detection using a computer-vision algorithm. Several color spaces (RGB, HSV and CIELAB) were evaluated, with the coordinate a_star, from the CIELAB color space, providing the highest sensitivity. Moreover, in order to avoid possible errors due to variations in illumination, a color palette is included in the picture of the analytical disk, and a correction using the a_star value from one of the color patches is proposed. The methodology presented recoveries of 82–101% at 0.1 µg and 0.5 µg of sulfamethoxazole (25 mL), providing a detection limit of 0.08 µg and a quantification limit of 0.26 µg. As a proof of concept, application to in-field analysis was successfully implemented.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261651
Author(s):  
Gabriel J. Bowen ◽  
Jessica S. Guo ◽  
Scott T. Allen

A wide range of hydrological, ecological, environmental, and forensic science applications rely on predictive “isoscape” maps to provide estimates of the hydrogen or oxygen isotopic compositions of environmental water sources. Many water isoscapes have been developed, but few studies have produced isoscapes specifically representing groundwaters. None of these have represented distinct subsurface layers and isotopic variations across them. Here we compiled >6 million well completion records and >27,000 groundwater isotope datapoints to develop a space- and depth-explicit water isoscape for the contiguous United States. This 3-dimensional model shows that vertical isotopic heterogeneity in the subsurface is substantial in some parts of the country and that groundwater isotope delta values often differ from those of coincident precipitation or surface water resources; many of these patterns can be explained by established hydrological and hydrogeological mechanisms. We validate the groundwater isoscape against an independent data set of tap water values and show that the model accurately predicts tap water values in communities known to use groundwater resources. This new approach represents a foundation for further developments and the resulting isoscape should provide improved predictions of water isotope values in systems where groundwater is a known or potential water source.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Nadezhda Golubkina ◽  
Vladimir Zayachkovsky ◽  
Sergei Sheshnitsan ◽  
Liubov Skrypnik ◽  
Marina Antoshkina ◽  
...  

Protection of plants against herbivorous pests is an important aspect that guarantees agricultural efficiency, i.e., food provision to populations. Environmental, water and foodstuff pollution by toxic pesticides, along with climate changes, highlight the necessity to achieve intensive development of ecologically safe methods of herbivory control. This review discusses modern methods of plant protection against insect pests: the biofortification of plants with selenium, treatment of plants with bulk and nano-silicon, and utilization of garlic extracts. The peculiarities of such methods of defense are described in relation to growth stimulation as well as increasing the yield and nutritional value of products. Direct defense methods, i.e., mechanical, hormonal, through secondary metabolites and/or mineral element accumulation, and indirect defense via predator attraction are discussed. Examples of herbivorous pest control during plant growth and grain/seed storage are emphasized. A comparison of sodium selenate, silicon containing fertilizer (Siliplant) and garlic extract efficiency is analyzed on Raphanus sativus var. lobo infested with the cruciferous gall midge Contarinia nasturtii, indicating the quick annihilation of pests as a result of the foliar application of garlic extract or silicon-containing fertilizer, Siliplant.


Author(s):  
Tan Lei Lu ◽  
Mohamad Shariff Shahriman ◽  
Kavirajaa Pandian Sambasevam ◽  
Nur Nadhirah Mohamad Zain ◽  
Noorfatimah Yahaya ◽  
...  

Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132324
Author(s):  
Jiahui Wang ◽  
Gaoxing Su ◽  
Xiliang Yan ◽  
Wei Zhang ◽  
Jianbo Jia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document