scholarly journals Hospital-based RNA Therapeutics

Author(s):  
Tulsi Damase ◽  
Roman Sukhovershin ◽  
Min Zhang ◽  
Daniel Kiss ◽  
John Cooke

Hospital-based programs democratize mRNA therapeutics by facilitating the processes to translate a novel RNA idea from the bench to the clinic. Because mRNA is essentially biological software, therapeutic RNA constructs can be rapidly developed. The generation of small batches of clinical grade mRNA to support IND applications and first-in-man clinical trials, as well as personalized mRNA therapeutics delivered at the point-of-care, is feasible at a modest scale of cGMP manufacturing. Advances in mRNA manufacturing science and innovations in mRNA biology, are increasing the scope of mRNA clinical applications.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sonam Gurung ◽  
Dany Perocheau ◽  
Loukia Touramanidou ◽  
Julien Baruteau

AbstractThe use of exosomes in clinical settings is progressively becoming a reality, as clinical trials testing exosomes for diagnostic and therapeutic applications are generating remarkable interest from the scientific community and investors. Exosomes are small extracellular vesicles secreted by all cell types playing intercellular communication roles in health and disease by transferring cellular cargoes such as functional proteins, metabolites and nucleic acids to recipient cells. An in-depth understanding of exosome biology is therefore essential to ensure clinical development of exosome based investigational therapeutic products. Here we summarise the most up-to-date knowkedge about the complex biological journey of exosomes from biogenesis and secretion, transport and uptake to their intracellular signalling. We delineate the major pathways and molecular players that influence each step of exosome physiology, highlighting the routes of interest, which will be of benefit to exosome manipulation and engineering. We highlight the main controversies in the field of exosome research: their adequate definition, characterisation and biogenesis at plasma membrane. We also delineate the most common identified pitfalls affecting exosome research and development. Unravelling exosome physiology is key to their ultimate progression towards clinical applications.


2015 ◽  
Vol 122 (3) ◽  
pp. 697-706 ◽  
Author(s):  
Russell R. Lonser ◽  
Malisa Sarntinoranont ◽  
Paul F. Morrison ◽  
Edward H. Oldfield

Convection-enhanced delivery (CED) is a bulk flow–driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.


Author(s):  
Diego Alejandro Dri ◽  
Maurizio Massella ◽  
Donatella Gramaglia ◽  
Carlotta Marianecci ◽  
Sandra Petraglia

: Machine Learning, a fast-growing technology, is an application of Artificial Intelligence that has significantly contributed to drug discovery and clinical development. In the last few years, the number of clinical applications based on Machine Learning has constantly been growing. Moreover, it is now also impacting National Competent Authorities during the assessment of most recently submitted Clinical Trials that are designed, managed, or generating data deriving from the use of Machine Learning or Artificial Intelligence technologies. We review current information available on the regulatory approach to Clinical Trials and Machine Learning. We also provide inputs for further reasoning and potential indications, including six actionable proposals for regulators to proactively drive the upcoming evolution of Clinical Trials within a strong regulatory framework, focusing on patient safety, health protection, and fostering immediate access to effective treatments.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joel Jihwan Hwang ◽  
Yeri Alice Rim ◽  
Yoojun Nam ◽  
Ji Hyeon Ju

Mesenchymal stem cell (MSC) therapies have been used as cell-based treatments for decades, owing to their anti-inflammatory, immunomodulatory, and regenerative properties. With high expectations, many ongoing clinical trials are investigating the safety and efficacy of MSC therapies to treat arthritic diseases. Studies on osteoarthritis (OA) have shown positive clinical outcomes, with improved joint function, pain level, and quality of life. In addition, few clinical MSC trials conducted on rheumatoid arthritis (RA) patients have also displayed some optimistic outlook. The largely positive outcomes in clinical trials without severe side effects establish MSCs as promising tools for arthritis treatment. However, further research is required to investigate its applicability in clinical settings. This review discusses the most recent advances in clinical studies on MSC therapies for OA and RA.


2017 ◽  
Vol 4 (3-4) ◽  
pp. 234-235 ◽  
Author(s):  
Vlassov V Salval ◽  
Yone Moto

More than 500 clinical trials are using mesenchymal stem cells (MSCs) in the world to treat some different diseases. The safety of expanded MSC transplantation is the most important thing to ensure that this therapy can become the routine treatment for human diseases. More than five MSCs based stem cell drug products are approved at various countries demonstrated that expanded MSCs are safe in both local injection and transfusion. Moreover, some recent reports for 5 and 10 years followed-up clinical trials using expanded MSCs confirmed that there is not different tumorigenesis between the patients with and without expanded MSC transplantation. This letter aims to provide some evidences about the safety of expanded MSCs in clinical applications. However, the MSC quality should be stritcly controlled during the in vitro MSC expansion.


2011 ◽  
Vol 31 (6) ◽  
pp. 785-786 ◽  
Author(s):  
David O. Meltzer ◽  
Ties Hoomans ◽  
Jeannette W. Chung ◽  
Anirban Basu

Value of information (VOI) techniques can provide estimates of the expected benefits from clinical research studies that can inform decisions about the design and priority of those studies. Most VOI studies use decision-analytic models to characterize the uncertainty of the effects of interventions on health outcomes, but the complexity of constructing such models can pose barriers to some practical applications of VOI. However, because some clinical studies can directly characterize uncertainty in health outcomes, it may sometimes be possible to perform VOI analysis with only minimal modeling. This article 1) develops a framework to define and classify minimal modeling approaches to VOI, 2) reviews existing VOI studies that apply minimal modeling approaches, and 3) illustrates and discusses the application of the minimal modeling to two new clinical applications to which the approach appears well suited because clinical trials with comprehensive outcomes provide preliminary estimates of the uncertainty in outcomes. We conclude that minimal modeling approaches to VOI can be readily applied to in some instances to estimate the expected benefits of clinical research.


Sign in / Sign up

Export Citation Format

Share Document