scholarly journals Environmental Method for Preparation of Higher Color Strength Dyeing Cotton Fabrics with Colored Nanosilica Pigment

Author(s):  
Jinping Zhang ◽  
Yonghe Li ◽  
Peibo Du ◽  
Zhiguang Guo ◽  
Zaisheng Cai ◽  
...  

Abstract Dye wastewater into the water system would cause a severe threat to the natural environment. To reduce the dye discharge, it is highly essential to find a clean and green method to color cotton fabrics. Herein, this work has expediently designed the novel pigment with colored nanoparticles to dye cotton fabrics, which was based on the adsorption of dyes from dyes solution with the synthesis of worm-like hydrophilic porous silica (WHMS) and formed colored particles. It could be found that as-prepared WHMS exhibited with the larger surface area of 968.61 m2/g, the average size of 300 nm and the higher electronegativity on the surface of WHMS materials and could be favorable to capture dye to achieve the capacity above 500 mg/g for different cationic and reduce dyes discharge. The colored WHMS applied in dyeing cotton fabrics show the higher stability and stronger color strength by electrostatic attraction compared with original dyes, in which the mass of WHMS-dyes could be retained by above 80% in thermal decomposition, the color depth of WHMS-dyes dying fabrics increased by above1.2 times and the dye residues in the dyeing process were reduced. The high-quality dyeing fabrics can be obtained and nanospheres uniformly fixed on cotton fabrics through the binder to build a layer film, owing to its hydrophobicity and small sizes. The dyeing cotton fabrics exhibited good wet rubbing, washing fastness and hand feel. These results suggest that the WHMS-dyes can be suitable for cotton dyeing textiles as a sustainable coloring process.

2017 ◽  
Vol 88 (12) ◽  
pp. 1345-1355 ◽  
Author(s):  
Xiaodong Mao ◽  
Yi Zhong ◽  
Hong Xu ◽  
Linping Zhang ◽  
Xiaofeng Sui ◽  
...  

A novel low add-on dyeing process of cotton fabric with C.I. Reactive Black 5 has been implemented successfully with the assistance of dye-jet ejector units to produce precise wet pick-up ranging from 20% to 50%. The steaming process of the low add-on technology was investigated through evaluating the effects of relative humidity, steaming temperature, steaming time and water ratio on the surface temperature of the wet fabric and their influence on the dye properties, as well as the effect of the wet pick-up on dye properties. The optimal dyeing process was also conducted, including build-up properties and the concentrations of the alkaline agent and the electrolyte via the evaluation of the color strength ( K/ S value) and dye fixation rate. A comparison was made between the novel low add-on dyeing process and conventional dyeing process by assessing the dye properties, color shade and color levelness. The results indicated that the fabric dyed with the low add-on process had excellent washing fastness, rubbing fastness, a similar color shade and superior levelness in comparison with conventional one-bath pad-steam dyeing.


2020 ◽  
Vol 11 (4) ◽  
pp. 11666-11678

The main goal of this study is to modify cotton as cellulose-based fabrics through cationization to improve its dyeing with acid dyes and its antibacterial. Quat-188 was applied to cotton to prepare cationized cotton, overcoming the negative charges between cotton and acid dyes during the dyeing process without using any electrolyte via the pad-dry-cure method. Then the cationized cotton fabrics were treated with the prepared silver nanoparticles to improve their antibacterial properties. The untreated and treated cotton fabrics were dyed with two acid dyes Acid Brilliant Blue PB 100% (acid blue 25; AB25) and Acid Metanil Yellow MT 100% (acid yellow 36) at concentrations of 2%, 4%, and 6% of by exhaust method. Colour strength, color, and washing fastness of untreated and treated cotton fabrics were studied. Antibacterial properties of fabrics were also evaluated against S. aureus and E. coli by using the disk diffusion method. Dyeing properties showed that the treated cotton fabrics significantly improved color strength and fastness properties (light, washing, perspiration, and rubbing). Also, the antibacterial properties of treated cotton fabrics showed antibacterial activity towards tested bacteria. This study reveals that modified cotton fabrics via cationization with Quat-188 and AgNPs have multifunctional properties from their ability for acid dyes and their higher antibacterial activity towards Gram-positive and Gram-negative bacteria that is can be used in many applications.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5731
Author(s):  
Ana Sutlović ◽  
Martinia Ira Glogar ◽  
Ivana Čorak ◽  
Anita Tarbuk

This article deals with cationization of cotton during mercerization and its effects on trichromatic vat dyeing. If cationization is carried out during the after-treatment, regardless of cotton pretreatment, the reaction takes place on the surface and blocks cellulose groups, subsequently resulting in uneven coloration. However, when cationization is carried out with an epihalohydrin during the mercerization process, new cellulose is formed in which the cationic compound is uniformly distributed and trapped between cellulose chains, resulting in uniform coloration after the dyeing process. The reaction time for the process during mercerization is 24 h, thus a more favorable process was researched. Based on electrokinetic analysis, it was found that 5 h was sufficient for the reaction with 3-chloro-2-hydroxypropyltrimethyl ammonium chloride (CHPTAC). The cationization of cotton contributed to the processes of vat dyeing. The change in charge upon cationization resulted in very high adsorption of vat-dye anions, indicating that ionic bonding occurred in addition to van der Waals forces. The color depth improved by more than 10 times. It should be emphasized that the colors with higher chroma and targeted color hue, especially in trichromatic dyeing, were obtained on cationized cotton, in contrast to standard cotton fabrics. The color differences obtained under the different light sources indicate the occurrence of metamerism. Considering the color fastness to laundering, vat-dyed cationized fabrics of all colors may be used in hospitals or other environments where high hygiene and oxidative bleaching are required.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5850
Author(s):  
Faizan Shafiq ◽  
Amna Siddique ◽  
Md. Nahid Pervez ◽  
Mohammad Mahbubul Hassan ◽  
Vincenzo Naddeo ◽  
...  

The aerial parts of the Argy Worm Wood (AWW) plant have been used in different Chinese foods as a colorant and a taste enhancer for a long time. Despite its application as a food colorant, it has rarely been considered for the coloration of textiles. Keeping in mind the variation in color strength due to the change in phytochemical contents by seasonal change and other variables, the extraction of AWW aerial parts was optimized using the Taguchi method. Optimization was performed on the basis of total phytochemical contents (phenols, flavonoids, and tannins) in the extracted solutions. For this purpose, two different solvent systems, namely sodium hydroxide/water (NaOH/water) and ethanol/water (EtOH/water), were applied through a simple aqueous extraction method at varying levels of solvent concentration, and extraction temperature and duration. Maximum phytochemicals yield of 21.96% was obtained using NaOH/water system with 9 g/L NaOH/water at 85 °C for 20 min and 25.5% with 75% aqueous ethanol at 85 °C for 40 min. Optimized extracts were characterized by UV-Vis and FTIR spectrophotometry, which showed the presence of multiple phytochemicals in the extracts. The dyeing temperature and time were also optimized. Dyed cotton fabrics showed medium to high colorfastness to washing and excellent antibacterial and UV radiation absorption properties. The effect of pre-mordanting with salts of iron and copper was also studied on the color fastness properties. Cotton fabrics dyed with two different solvent system extracts displayed various shades of brown with NaOH/water, and green with aqueous ethanol with and without pre-mordanting. The present study provides the textile industry with a promising source of functional bio-colorant and a value-adding approach for the AWW plant industry.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Bing Li ◽  
Yongchun Dong ◽  
Zhizhong Ding ◽  
Yiming Xu ◽  
Chi Zou

Cu-Fe bimetallic grafted polytetrafluoroethylene (PTFE) fiber complexes were prepared and optimized as the novel heterogeneous Fenton catalysts for the degradation of reactive dyes under UV irradiation. Cotton fabrics were dyed with three reactive dyes, namely, Reactive Red 195, Reactive Yellow 145, and Reactive Blue 222, in tap fresh water using exhaustion process. The spent dyeing effluents were then collected and degraded with the optimized Cu-Fe bimetallic grafted PTFE fiber complex/H2O2system. The treated dyeing effluents were characterized and reused for the dyeing of cotton fabrics through the same process. The effect of reuse process number on quality of the dyed cotton fabrics was examined. The results indicated that the Cu-Fe bimetallic modified PTFE fiber complex with a Cu/Fe molar ratio of 2.87 was found to be the most effective fibrous catalyst, which enhanced complete decolorization of the treated dyeing effluents with H2O2in 4 h. However, the TOC removal for the treated dyeing effluents was below 80%. The dyeing quality was not affected for three successive cycles. The increase in residual TOC value influences fourth dyeing cycle. Further TOC reduction of the treated effluents is needed for its repeated reuse in more than three dyeing cycles.


2012 ◽  
Vol 441 ◽  
pp. 57-60
Author(s):  
Xia Zhu ◽  
Qing Tao Meng

t is pre-mordant dyeing. Dyeing property of Carmine, gardenia yellow and sodium copper chlorophyll on cotton fabrics which were pre-treated by metal mordant (FeSO4AlCl3 and ZnCl2 ) was studied. The reasonable pre-treatment was determined by comparing the color depth (K/S value) of dyed samples. And then, the dyed samples were treated with no-iron finishing resin 931-33 to fix the color. The result shows that the color depth of cotton fabric is greatly improved after determined pre-treatment, and the washing fastness is improved after color fixing.


2021 ◽  
Vol 3 (1) ◽  
pp. 18
Author(s):  
Thi Tuong Vy Phan

The chemical and physical routes are usually used to synthesize metal nanoparticles. However, the harmful effects on the environment and human health has turned scientists into finding greener methods. We have developed the novel green method for the synthesis of flower Pd nanoparticles based on the chitosan (CS) polymer. In this method, CS can work as a stabilizer, a shape-directing agent, and a size-controllable agent for the synthesis of these nanoparticles. This study provides pioneer evidence about the multifunctional roles of natural polymers in the preparation of metal nanoparticles. Deep and extensive studies should be conducted to explore the great benefits of natural polymers in the green synthesis of metal nanoparticles.


2017 ◽  
Vol 36 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Sharjeel Abid ◽  
Tanveer Hussain ◽  
Ahsan Nazir ◽  
Zulfiqar Ali Raza ◽  
Amna Siddique ◽  
...  

In printing and resin finishing of cotton fabrics, the curing step is involved twice, firstly for fixation of reactive dye and secondly for the fixation of resin for proper cross-linking. In developing country like Pakistan, where cotton is a major portion of textile exports, the elimination of one fixation stage is economical and advantageous. This study dealt with the simultaneous fixation of wrinkle-free finish (resin) and reactive dye printing for cost effectiveness. The processed route of treatment imparted a maximum dry crease recovery angle of 230° and color strength up to 89.89%. The produced fabrics were characterized using crocking fastness (dry and wet), color strength sum %, color fastness to laundry, crease recovery angle, and wrinkle recovery by appearance method. Response surface optimizer gave good composite desirability value (0.08300) with color strength % of up to 73.73 and dry crease recovery angle up to 218°.


2013 ◽  
Vol 821-822 ◽  
pp. 626-629 ◽  
Author(s):  
Yan Mei Jia

To enrich the color of natural dyes, a natural pigment was extracted from black rice and used to dye tussah silk. The stability of the extract to mordant ions was investigated by Visible Spectrum and the effect of the dyeing pH, dyeing temperature, dyeing time as well as mordant process on dyeing properties (K/S value) were studied, the optimum dyeing process was obtained. The results show that the optimized direct dyeing process is pH value 4. 5, dyeing at 90 °C for 60 min, the color of dyed fabric various with metal ions. In comparison, the fabric post-mordant dyeing with ferrous sulfate exhibits the higher color depth and better color fastness.


2020 ◽  
Vol 49 (6) ◽  
pp. 483-489
Author(s):  
Aminoddin Haji

Purpose The dyeing of cellulosic and proteinous fibers with natural and synthetic colorants usually needs large amounts of metal salts to promote the dyeing procedure. To get rid of the necessity to use metal salts, plasma treatment and subsequent attachment of chitosan biopolymer were considered as green processes for surface functionalization of wool and cotton. The purpose of this paper is to investigate the effect of oxygen plasma treatment and attachment of chitosan on the dyeability of wool and cotton fabrics using walnut and weld as model natural dyes, as well as C.I. reactive blue 50 and C.I. acid blue 92 as model synthetic dyes. Design/methodology/approach Wool and cotton fabrics were modified with oxygen plasma and coated with chitosan solution. The un-modified and modified samples were dyed with the above-mentioned dyes under constant conditions. The color strength, color coordinates and fastness properties of the dyed samples were determined and compared. Findings The results showed that oxygen plasma treatment could improve the dyeability and fastness properties of wool and cotton fibers when dyed with all of the above-mentioned dyes. Attachment of chitosan to the plasma-treated samples significantly improved the dyeability of wool and cotton fibers with walnut, acid and reactive dyes. The fastness properties of the dyed samples were enhanced by plasma treatment and chitosan coating. Originality/value This study uses plasma treatment as an environmentally friendly pre-treatment for attachment of chitosan on wool and cotton. This process improved the dyeing properties of both fibers. The use of metal salts in not needed for dyeing of wool and cotton according to the investigated process.


Sign in / Sign up

Export Citation Format

Share Document