scholarly journals Better Network Modeling For Link Prediction In Protein-Protein Interaction Networks

Author(s):  
Ho Yin Yuen ◽  
Jesper Jansson

Abstract Background: Protein-protein interaction (PPI) data is an important type of data used in functional genomics. However, inaccuracies in high-throughput experiments often result in incomplete PPI data. Computational techniques are thus used to infer missing data and to evaluate confidence scores, with link prediction being one such approach that uses the structure of the network of PPIs known so far to find good candidates for missing PPIs. Recently, a new idea called the L3 principle introduced biological motivation into PPI link predictions, yielding predictors that are superior to general-purpose link predictors for complex networks. However, the previously developed L3 principle-based link predictors are only an approximate implementation of the L3 principle. As such, not only is the full potential of the L3 principle not realized, they may even lead to candidate PPIs that otherwise fit the L3 principle being penalized. Result: In this article, we propose a formulation of link predictors without approximation that we call ExactL3 (L3E) by addressing missing elements within L3 predictors in the perspective of network modeling. Through statistical and biological metrics, we show that in general, L3E predictors perform better than the previously proposed methods on seven datasets across two organisms (human and yeast) using a reasonable amount of computation time. In addition to L3E being able to rank the PPIs more accurately, we also found that L3-based predictors, including L3E, predicted a different pool of real PPIs than the general-purpose link predictors. This suggests that different types of PPIs can be predicted based on different topological assumptions and that even better PPI link predictors may be obtained in the future by improved network modeling.

2020 ◽  
Vol 27 (4) ◽  
pp. 265-278 ◽  
Author(s):  
Ying Han ◽  
Liang Cheng ◽  
Weiju Sun

The interactions among proteins and genes are extremely important for cellular functions. Molecular interactions at protein or gene levels can be used to construct interaction networks in which the interacting species are categorized based on direct interactions or functional similarities. Compared with the limited experimental techniques, various computational tools make it possible to analyze, filter, and combine the interaction data to get comprehensive information about the biological pathways. By the efficient way of integrating experimental findings in discovering PPIs and computational techniques for prediction, the researchers have been able to gain many valuable data on PPIs, including some advanced databases. Moreover, many useful tools and visualization programs enable the researchers to establish, annotate, and analyze biological networks. We here review and list the computational methods, databases, and tools for protein−protein interaction prediction.


Sign in / Sign up

Export Citation Format

Share Document