graph embedding
Recently Published Documents


TOTAL DOCUMENTS

1044
(FIVE YEARS 660)

H-INDEX

32
(FIVE YEARS 10)

2022 ◽  
Vol 27 (2) ◽  
pp. 244-256
Author(s):  
Kainan Zhang ◽  
Zhi Tian ◽  
Zhipeng Cai ◽  
Daehee Seo

2023 ◽  
Vol 55 (1) ◽  
pp. 1-37
Author(s):  
Claudio D. T. Barros ◽  
Matheus R. F. Mendonça ◽  
Alex B. Vieira ◽  
Artur Ziviani

Embedding static graphs in low-dimensional vector spaces plays a key role in network analytics and inference, supporting applications like node classification, link prediction, and graph visualization. However, many real-world networks present dynamic behavior, including topological evolution, feature evolution, and diffusion. Therefore, several methods for embedding dynamic graphs have been proposed to learn network representations over time, facing novel challenges, such as time-domain modeling, temporal features to be captured, and the temporal granularity to be embedded. In this survey, we overview dynamic graph embedding, discussing its fundamentals and the recent advances developed so far. We introduce the formal definition of dynamic graph embedding, focusing on the problem setting and introducing a novel taxonomy for dynamic graph embedding input and output. We further explore different dynamic behaviors that may be encompassed by embeddings, classifying by topological evolution, feature evolution, and processes on networks. Afterward, we describe existing techniques and propose a taxonomy for dynamic graph embedding techniques based on algorithmic approaches, from matrix and tensor factorization to deep learning, random walks, and temporal point processes. We also elucidate main applications, including dynamic link prediction, anomaly detection, and diffusion prediction, and we further state some promising research directions in the area.


2022 ◽  
Vol 175 ◽  
pp. 121413
Author(s):  
Seokkyu Choi ◽  
Hyeonju Lee ◽  
Eunjeong Park ◽  
Sungchul Choi

2022 ◽  
Vol 122 ◽  
pp. 108334
Author(s):  
Lin Guo ◽  
Qun Dai

Semantic Web ◽  
2022 ◽  
pp. 1-24
Author(s):  
Jan Portisch ◽  
Nicolas Heist ◽  
Heiko Paulheim

Knowledge Graph Embeddings, i.e., projections of entities and relations to lower dimensional spaces, have been proposed for two purposes: (1) providing an encoding for data mining tasks, and (2) predicting links in a knowledge graph. Both lines of research have been pursued rather in isolation from each other so far, each with their own benchmarks and evaluation methodologies. In this paper, we argue that both tasks are actually related, and we show that the first family of approaches can also be used for the second task and vice versa. In two series of experiments, we provide a comparison of both families of approaches on both tasks, which, to the best of our knowledge, has not been done so far. Furthermore, we discuss the differences in the similarity functions evoked by the different embedding approaches.


Semantic Web ◽  
2022 ◽  
pp. 1-34
Author(s):  
Sebastian Monka ◽  
Lavdim Halilaj ◽  
Achim Rettinger

The information perceived via visual observations of real-world phenomena is unstructured and complex. Computer vision (CV) is the field of research that attempts to make use of that information. Recent approaches of CV utilize deep learning (DL) methods as they perform quite well if training and testing domains follow the same underlying data distribution. However, it has been shown that minor variations in the images that occur when these methods are used in the real world can lead to unpredictable and catastrophic errors. Transfer learning is the area of machine learning that tries to prevent these errors. Especially, approaches that augment image data using auxiliary knowledge encoded in language embeddings or knowledge graphs (KGs) have achieved promising results in recent years. This survey focuses on visual transfer learning approaches using KGs, as we believe that KGs are well suited to store and represent any kind of auxiliary knowledge. KGs can represent auxiliary knowledge either in an underlying graph-structured schema or in a vector-based knowledge graph embedding. Intending to enable the reader to solve visual transfer learning problems with the help of specific KG-DL configurations we start with a description of relevant modeling structures of a KG of various expressions, such as directed labeled graphs, hypergraphs, and hyper-relational graphs. We explain the notion of feature extractor, while specifically referring to visual and semantic features. We provide a broad overview of knowledge graph embedding methods and describe several joint training objectives suitable to combine them with high dimensional visual embeddings. The main section introduces four different categories on how a KG can be combined with a DL pipeline: 1) Knowledge Graph as a Reviewer; 2) Knowledge Graph as a Trainee; 3) Knowledge Graph as a Trainer; and 4) Knowledge Graph as a Peer. To help researchers find meaningful evaluation benchmarks, we provide an overview of generic KGs and a set of image processing datasets and benchmarks that include various types of auxiliary knowledge. Last, we summarize related surveys and give an outlook about challenges and open issues for future research.


2022 ◽  
Vol 23 (S1) ◽  
Author(s):  
Fei Song ◽  
Shiyin Tan ◽  
Zengfa Dou ◽  
Xiaogang Liu ◽  
Xiaoke Ma

Abstract Background Drug combination, offering an insight into the increased therapeutic efficacy and reduced toxicity, plays an essential role in the therapy of many complex diseases. Although significant efforts have been devoted to the identification of drugs, the identification of drug combination is still a challenge. The current algorithms assume that the independence of feature selection and drug prediction procedures, which may result in an undesirable performance. Results To address this issue, we develop a novel Semi-supervised Heterogeneous Network Embedding algorithm (called SeHNE) to predict the combination patterns of drugs by exploiting the graph embedding. Specifically, the ATC similarity of drugs, drug–target, and protein–protein interaction networks are integrated to construct the heterogeneous networks. Then, SeHNE jointly learns drug features by exploiting the topological structure of heterogeneous networks and predicting drug combination. One distinct advantage of SeHNE is that features of drugs are extracted under the guidance of classification, which improves the quality of features, thereby enhancing the performance of prediction of drugs. Experimental results demonstrate that the proposed algorithm is more accurate than state-of-the-art methods on various data, implying that the joint learning is promising for the identification of drug combination. Conclusions The proposed model and algorithm provide an effective strategy for the prediction of combinatorial patterns of drugs, implying that the graph-based drug prediction is promising for the discovery of drugs.


Sign in / Sign up

Export Citation Format

Share Document