A Review on Deep Learning Techniques for Detecting Lung Cancer and Lung Image Annotation

2020 ◽  
Author(s):  
Madhavi aluka ◽  
Sumathi Ganesan
2021 ◽  
Vol 2078 (1) ◽  
pp. 012048
Author(s):  
Jiasheng Ni

Abstract Remote medical prognosis application is a category of medical tests tool designed to collect patients’ body conditions and offer diagnosis results synchronously. However, most online applications are predicated on a simple chat bot which typically redirect patients to other online medical websites, which undermines the user experience and may prompt useless information for their reference. To tackle these issues, this paper proposed a medical prognosis application with deep learning techniques for a more responsive and intelligent medical prognosis procedure. This application can be break down into three parts-lung cancer detection, a database-supporting medical QA bot and a Hierarchical Bidirectional LSTM model (HBDA). A 3D-CNN model is built for the lung cancer detection, with a sequence of sliced CT images as inputs and outputs a probability scaler for tumor indications. A knowledge graph is applied in the medical QA bot implementation and the HBDA model is designed for semantic segmentation in order to better capture users’ intention in medical questions. For the performance of the medical prognosis, since we have limited computer memory, the 3D-CNN didn’t perform very well on detecting tumor conditions in the CT images with accuracy at around 70%. The knowledge graph-based medical QA bot intelligently recognize the underlying pattern in patients’ question and delivered decent medical response. The HBDA model performs well on distinguish the similarities and disparities between various medical questions, reaching accuracy at 90%. These results shed light for the feasibility of utilizing deep learning techniques such as 3D-CNN, Knowledge Graph, and Hierarchical Bi-directional LSTM to simulate the medical prognosis process.


Author(s):  
Pavan Kumar Illa ◽  
T. Senthil Kumar ◽  
F. Syed Anwar Hussainy

Lung cancer is one of the leading causes of cancer related deaths. It is due to the complexity of early detection of nodules. In clinical practice, radiologists find it difficult to determine whether a condition is normal or abnormal by manually analysing CT scan or X-ray images for nodule identification. Currently, various deep learning techniques have been developed to identify lung nodules as benign or malignant, but each technique has its own advantages and drawbacks. This work presents a thorough analysis based on segmentation techniques, Related features-based detection, multi-step detection, automatic detection, and deep convolutional neural network techniques. Performance comparison was conducted on a selected works based on performance measures. A potential research direction for the recognition of lung nodules is given at the end of this study.


2022 ◽  
Author(s):  
Vijay Kumar Gugulothu ◽  
Savadam Balaji

Abstract Detection of malignant lung nodules at an early stage may allow for clinical interventions that increase the survival rate of lung cancer patients. The use of hybrid deep learning techniques to detect nodules will improve the sensitivity of lung cancer screening and the interpretation speed of lung scans.Accurate detection of lung nodes is an important step in computed tomography (CT) imaging to detect lung cancer. However, it is very difficult to identify strong nodes due to the diversity of lung nodes and the complexity of the surrounding environment.Here, we proposed alung nodule detection and classification with CT images based on hybrid deep learning (LNDC-HDL) techniques. First, we introduce achaotic bird swarm optimization (CBSO) algorithm for lung nodule segmentation using statistical information. Second, we illustrate anImproved Fish Bee (IFB) algorithm for feature extraction and selection process. Third, we develop hybrid classifier i.e. hybrid differential evolution based neural network (HDE-NN) for tumor prediction and classification.Experimental results have shown that the use of computed tomography, which demonstrates the efficiency and importance of the HDE-NN specific structure for detecting lung nodes on CT scans, increases sensitivity and reduces the number of false positives. The proposed method shows that the benefits of HDE-NN node detection can be reaped by combining clinical practice.


Author(s):  
Riya Nimje

Abstract: Early disease detection cannot be neglected in the healthcare domain and especially in the diseases where a person's life is at stake. According to the WHO, if the diseases are predicted on time, then the death rates could reduce. The paper's goal is to find out how to detect Breast Cancer, Skin Cancer, Lung Cancer, and Brain Tumor at the early stages with the help of Deep Learning techniques. The authors of different papers have used different techniques and Algorithms like Adaptive Median Filters, Gaussian Filters, CNN algorithms, etc. Keywords: Breast Cancer, Skin Cancer, Brain Tumor, Lung Cancer, Deep Learning, CNN, SVM, Random Forest


AI ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 28-67 ◽  
Author(s):  
Diego Riquelme ◽  
Moulay Akhloufi

Detecting malignant lung nodules from computed tomography (CT) scans is a hard and time-consuming task for radiologists. To alleviate this burden, computer-aided diagnosis (CAD) systems have been proposed. In recent years, deep learning approaches have shown impressive results outperforming classical methods in various fields. Nowadays, researchers are trying different deep learning techniques to increase the performance of CAD systems in lung cancer screening with computed tomography. In this work, we review recent state-of-the-art deep learning algorithms and architectures proposed as CAD systems for lung cancer detection. They are divided into two categories—(1) Nodule detection systems, which from the original CT scan detect candidate nodules; and (2) False positive reduction systems, which from a set of given candidate nodules classify them into benign or malignant tumors. The main characteristics of the different techniques are presented, and their performance is analyzed. The CT lung datasets available for research are also introduced. Comparison between the different techniques is presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document