Determination of Usnic Acid Responsive miRNAs in Breast Cancer Cell Lines

2019 ◽  
Vol 19 (12) ◽  
pp. 1463-1472 ◽  
Author(s):  
Nil Kiliç ◽  
Yasemin Ö. Islakoğlu ◽  
İlker Büyük ◽  
Bala Gür-Dedeoğlu ◽  
Demet Cansaran-Duman

Objective: Breast Cancer (BC) is the most common type of cancer diagnosed in women. A common treatment strategy for BC is still not available because of its molecular heterogeneity and resistance is developed in most of the patients through the course of treatment. Therefore, alternative medicine resources as being novel treatment options are needed to be used for the treatment of BC. Usnic Acid (UA) that is one of the secondary metabolites of lichens used for different purposes in the field of medicine and its anti-proliferative effect has been shown in certain cancer types, suggesting its potential use for the treatment. Methods: Anti-proliferative effect of UA in BC cells (MDA-MB-231, MCF-7, BT-474) was identified through MTT analysis. Microarray analysis was performed in cells treated with the effective concentration of UA and UA-responsive miRNAs were detected. Their targets and the pathways that they involve were determined using a miRNA target prediction tool. Results: Microarray experiments showed that 67 miRNAs were specifically responsive to UA in MDA-MB-231 cells while 15 and 8 were specific to BT-474 and MCF-7 cells, respectively. The miRNA targets were mostly found to play role in Hedgehog signaling pathway. TGF-Beta, MAPK and apoptosis pathways were also the prominent ones according to the miRNA enrichment analysis. Conclusion: The current study is important as being the first study in the literature which aimed to explore the UA related miRNAs, their targets and molecular pathways that may have roles in the BC. The results of pathway enrichment analysis and anti-proliferative effects of UA support the idea that UA might be used as a potential alternative therapeutic agent for BC treatment.

2016 ◽  
Vol 371 ◽  
pp. 415-424 ◽  
Author(s):  
Uma Suganya K.S. ◽  
Govindaraju K. ◽  
Ganesh Kumar V. ◽  
Prabhu D. ◽  
Arulvasu C. ◽  
...  

2018 ◽  
Vol 8 (3) ◽  
pp. 159 ◽  
Author(s):  
Meghan Fragis ◽  
Abdulmonem I. Murayyan ◽  
Suresh Neethirajan

Background: Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer deaths among Canadian women. Cancer management through changes in lifestyle, such as increased intake of foods rich in dietary flavonoids, have been shown to decrease the risk associated with breast, liver, colorectal, and upper-digestive cancers in epidemiologic studies. Onions are high in flavonoid content and one of the most common vegetables. Additionally, onions are used in most Canadian cuisines.Methods: We investigated the effect of five prominent Ontario grown onion (Stanley, Ruby Ring, LaSalle, Fortress, and Safrane) extracts on two subtypes of breast cancer cell lines: a triple negative breast cancer line MDA-MB-231 and an ER+ breast cancer line MCF-7.Results: These onion extracts elicited strong anti-proliferative, anti-migratory, and cytotoxic activities on both the cancer cell lines. Flavonoids present in these onion extracts induced apoptosis, cell cycle arrest in the G2/M phase, and a reduction in mitochondrial membrane potential at dose-dependent concentrations. Onion extracts were more effective against MDA-MB-231 compared to the MCF-7 cell line. Conclusion: In this study, we investigated the extracts synthesized from Ontario-grown onion varieties in inducing anti-migratory, cytostatic, and cytotoxic activities in two sub-types of human breast cancer cell lines. Anti-tumor activity of these extracts depends upon the varietal and can be formulated into nutraceuticals and functional foods for the wellbeing of cancer patients. Overall, the results suggest that onion extracts are a good source of flavonoids with anti-cancerous properties.Keywords: onion extracts; flavonoids; anti-proliferative; breast cancer; cytotoxic activity


Author(s):  
Stefan Dimov ◽  
Anelia Ts. Mavrova ◽  
Denitsa Yancheva ◽  
Biliana Nikolova ◽  
Iana Tsoneva

Aims: The purpose was the synthesis of some new thienopyrimidines derivative of 1,3-disubstituted benzimidazoles and the evaluation of their cytotoxicity towards MDA-MB-231 and MCF-7 cell lines as well 3T3 cells. Background: An overexpression or mutational activation of TK receptors EGFR and HER2/neu are characteristic for tumors. It has been found that some thieno[2,3-d]pyrimidines exhibit better inhibitory activity against epidermal growth factor receptor (EGFR/ErbB-2) tyrosine kinase in comparison to aminoquinazolines. Breast cancer activity towards MDAMB-231 and MCF-7 cell lines by inhibiting EGFR was revealed by a novel 2-arylbenzimidazole. This motivated the synthesis of new thienopyrimidines possessing benzimidazole fragment in order to evaluate their cytotoxicity to the above mentioned cell lines. Objective: The objectives were the design and synthesis of a novel series thieno[2,3-d]pyrimidines bearing biologically active moieties as 1,3-disubstituted-benzimidazole heterocycle structurally similar to diaryl ureas in order to evaluate their cytotoxicity against MDA-MB-231, MCF-7 breast cancer cell lines. Methods: N,N-disubstituted benzimidazole-2-one carbonitriles were synthesized by Aza-Michael addition and used as precursors to generate some of the new thieno[2,3-d]pyrimidines in acidic medium. The interaction of chloroethyl-2- thienopyrimidines and 2-amino-benzimidazole resp. benzimidazol-2-one nitriles under solid-liquid transfer catalysis conditions lead to obtaining of new thienopyrimidines. MTT assay for cells survival was performed in order to establish the cytotoxicity of the tested compounds. Fluorescence study was used to elucidate some aspect of mechanism. Results: The effect of nine of the synthesized compounds was investigated towards MDA-MB-231 and MCF-7 cells as well as to 3T3 cells. Thieno[2,3-d]pyirimidine-4-one 16 (IC50 – 0.058 μM) and 21 (IC50 – 0.029 μM) possess high cytotoxicity against MDA-MB-231 cells after 24h. The most toxic against breast cancer MCF-7 cells was compounds 21 (IC50 – 0.074 μM), revealing lower cytotoxicity towards mouse fibroblast 3T3 cells with IC50 – 0.20 μM. SAR analisys was performed. Fluorescence study of the treatment of MDA-MB cells with compound 21 was carried out in order to clarify some aspects of mechanism of action. Conclusion: The relationship between cytotoxicity of compounds 14 and 20 against MCF-7 and 3T3 cells can suggest a similar mechanism of action. The antitumor potential of the tested compounds proves the necessity for further investigation to estimate the exact inhibition pathway in the cellular processes. The fluorescence study of the treatment of MDA-MB cells with compound 21 showed a rapid process of apoptosis.


2020 ◽  
Vol 10 (3) ◽  
pp. 257-261
Author(s):  
Tati Herlina ◽  
Merlin ◽  
Mohd. Azlan ◽  
Unang Supratman

Background: Erythrina poeppigiana (Leguminosae) is a high-growing plant with an orange flower that is widely distributed in tropical and subtropical countries. This particular plant is widely used in traditional medicine for gynecological complications and the treatment of various diseases. There exists no previous information regarding cytotoxic compounds from this plant. Objective: This research is to isolate cytotoxic compounds from E. poeppigiana. Methods: The isolation step was carried out using a combination of chromatographic techniques to obtain isolated three compounds (1, 2, and 3). Results: The chemical structure of isolated compounds was elucidated by spectroscopic methods and identified as β-erythroidine (1), 8-oxo-β-erythroidine (2), and 8-oxo-α-erythroidine (3). Compounds (1-3) showed cytotoxic activity against MCF-7 breast cancer line with IC50 values of 36.8, 60.8 and 875.4 μM, respectively. Conclusion: Three compounds have been successfully isolated from Erythrina poeppigiana (Leguminosae), showing cytotoxic properties against MCF-7 breast cancer line. Structure-activity relationship studies showed that the presence of enone moiety on compound 1 can reduce its cytotoxic activity towards MCF-7 breast cancer line.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Audrey R. Freischel ◽  
Mehdi Damaghi ◽  
Jessica J. Cunningham ◽  
Arig Ibrahim-Hashim ◽  
Robert J. Gillies ◽  
...  

AbstractTumors are highly dynamic ecosystems in which diverse cancer cell subpopulations compete for space and resources. These complex, often non-linear interactions govern continuous spatial and temporal changes in the size and phenotypic properties of these subpopulations. Because intra-tumoral blood flow is often chaotic, competition for resources may be a critical selection factor in progression and prognosis. Here, we quantify resource competition using 3D spheroid cultures with MDA-MB-231 and MCF-7 breast cancer cells. We hypothesized that MCF-7 cells, which primarily rely on efficient aerobic glucose metabolism, would dominate the population under normal pH and low glucose conditions; and MDA-MB-231 cells, which exhibit high levels of glycolytic metabolism, would dominate under low pH and high glucose conditions. In spheroids with single populations, MCF-7 cells exhibited equal or superior intrinsic growth rates (density-independent measure of success) and carrying capacities (density-dependent measure of success) when compared to MDA-MB-231 cells under all pH and nutrient conditions. Despite these advantages, when grown together, MCF-7 cells do not always outcompete MDA-MB-231 cells. MDA-MB-231 cells outcompete MCF-7 cells in low glucose conditions and coexistence is achieved in low pH conditions. Under all conditions, MDA-MB-231 has a stronger competitive effect (frequency-dependent interaction) on MCF-7 cells than vice-versa. This, and the inability of growth rate or carrying capacity when grown individually to predict the outcome of competition, suggests a reliance on frequency-dependent interactions and the need for competition assays. We frame these results in a game-theoretic (frequency-dependent) model of cancer cell interactions and conclude that competition assays can demonstrate critical density-independent, density-dependent and frequency-dependent interactions that likely contribute to in vivo outcomes.


2020 ◽  
Vol 21 (6) ◽  
pp. 1923 ◽  
Author(s):  
Valeria Ciaffaglione ◽  
Sebastiano Intagliata ◽  
Valeria Pittalà ◽  
Agostino Marrazzo ◽  
Valeria Sorrenti ◽  
...  

In this paper, a novel series of imidazole-based heme oxygenase-1 (HO-1) inhibitors is reported. These compounds were obtained by modifications of previously described high potent and selective arylethanolimidazoles. In particular, simplification of the central linker and repositioning of the hydrophobic portion were carried out. Results indicate that a hydroxyl group in the central region is crucial for the potency as well as the spatial distribution of the hydrophobic portion. Docking studies revealed a similar interaction of the classical HO-1 inhibitors with the active site of the protein. The most potent and selective compound (5a) was tested for its potential cytotoxic activity against hormone-sensitive and hormone-resistant breast cancer cell lines (MCF-7 and MDA-MB-231).


2000 ◽  
Vol 2 (S1) ◽  
Author(s):  
CJ Pogson ◽  
CMW Chan ◽  
L-A Martin ◽  
GPH Gui ◽  
M Dowsett

Author(s):  
Muhammad Luqman Nordin ◽  
Arifah Abdul Kadir ◽  
Zainul Amiruddin Zakaria ◽  
Rasedee Abdullah ◽  
Muhammad Nazrul Hakim Abdullah

Sign in / Sign up

Export Citation Format

Share Document