mechanism of action
Recently Published Documents


TOTAL DOCUMENTS

13308
(FIVE YEARS 2280)

H-INDEX

215
(FIVE YEARS 20)

2022 ◽  
Vol 9 (2) ◽  
pp. 55-62
Author(s):  
Rahman et al. ◽  

With the advent of medical technology and science, the number of animals used in research has increased. For decades, the use of animals in research and product testing has been a point of conflict. Experts and pharmaceutical manufacturers are harming animals worldwide during laboratory research. Animals have also played a significant role in the advancement of science; animal testing has enabled the discovery of various novel drugs. The misery, suffering, and deaths of animals are not worth the potential human benefits. As a result, animals must not be exploited in research to assess the drug mechanism of action (MOA). Apart from the ethical concern, animal testing has a few more downsides, including the requirement for skilled labor, lengthy processes, and cost. Because it is critical to investigate adverse effects and toxicities in the development of potentially viable drugs. Assessment of each target will consume the range of resources as well as disturb living nature. As the digital twin works in an autonomous virtual world without influencing the physical structure and biological system. Our proposed framework suggests that the digital twin is a great reliable model of the physical system that will be beneficial in assessing the possible MOA prior to time without harming animals. The study describes the creation of a digital twin to combine the information and knowledge obtained by studying the different drug targets and diseases. Mechanism of Action using Digital twin (MOA-DT) will enable the experts to use an innovative approach without physical testing to save animals, time, and resources. DT reflects and simulates the actual drug and its relationships with its target, however presenting a more accurate depiction of the drug, which leads to maximize efficacy and decrease the toxicity of a drug. In conclusion, it has been shown that drug discovery and development can be safe, effective, and economical in no time through the combination of the digital and physical models of a pharmaceutical as compared to experimental animals.


2022 ◽  
pp. 1-24
Author(s):  
Yawen Zeng ◽  
Muhammad Kazim Ali ◽  
Juan Du ◽  
Xia Li ◽  
Xiaomeng Yang ◽  
...  

2022 ◽  
Vol 23 (2) ◽  
pp. 902
Author(s):  
Magdalena Bryś ◽  
Karina Urbańska ◽  
Beata Olas

Genipin is an important monoterpene iridoid compound isolated from Gardenia jasminoides J.Ellis fruits and from Genipa americana fruits, or genipap. It is a precursor of a blue pigment which may be attractive alternative to existing food dyes and it possesses various potential therapeutic properties such as anti-cancer, anti-diabetic and hepatoprotective activity. Biomedical studies also show that genipin may act as a neuroprotective drug. This review describes new aspects of the bioactivity of genipin against various diseases, as well as its toxicity and industrial applications, and presents its potential mechanism of action.


2022 ◽  
Vol 12 ◽  
Author(s):  
Mohan Shankar G. ◽  
Mundanattu Swetha ◽  
C K Keerthana ◽  
Tennyson P Rayginia ◽  
Ruby John Anto

Cancer chemoprevention approaches are aimed at preventing, delaying, or suppressing tumor incidence using synthetic or natural bioactive agents. Mechanistically, chemopreventive agents also aid in mitigating cancer development, either by impeding DNA damage or by blocking the division of premalignant cells with DNA damage. Several pre-clinical studies have substantiated the benefits of using various dietary components as chemopreventives in cancer therapy. The incessant rise in the number of cancer cases globally is an issue of major concern. The excessive toxicity and chemoresistance associated with conventional chemotherapies decrease the success rates of the existent chemotherapeutic regimen, which warrants the need for an efficient and safer alternative therapeutic approach. In this scenario, chemopreventive agents have been proven to be successful in protecting the high-risk populations from cancer, which further validates chemoprevention strategy as rational and promising. Clinical studies have shown the effectiveness of this approach in managing cancers of different origins. Phytochemicals, which constitute an appreciable proportion of currently used chemotherapeutic drugs, have been tested for their chemopreventive efficacy. This review primarily aims to highlight the efficacy of phytochemicals, currently being investigated globally as chemopreventives. The clinical relevance of chemoprevention, with special emphasis on the phytochemicals, curcumin, resveratrol, tryptanthrin, kaempferol, gingerol, emodin, quercetin genistein and epigallocatechingallate, which are potential candidates due to their ability to regulate multiple survival pathways without inducing toxicity, forms the crux of this review. The majority of these phytochemicals are polyphenols and flavanoids. We have analyzed how the key molecular targets of these chemopreventives potentially counteract the key drivers of chemoresistance, causing minimum toxicity to the body. An overview of the underlying mechanism of action of these phytochemicals in regulating the key players of cancer progression and tumor suppression is discussed in this review. A summary of the clinical trials on the important phytochemicals that emerge as chemopreventives is also incorporated. We elaborate on the pre-clinical and clinical observations, pharmacokinetics, mechanism of action, and molecular targets of some of these natural products. To summarize, the scope of this review comprises of the current status, limitations, and future directions of cancer chemoprevention, emphasizing the potency of phytochemicals as effective chemopreventives.


Author(s):  
Carmela Ferri ◽  
Anna Di Biase ◽  
Marco Bocchetti ◽  
Silvia Zappavigna ◽  
Sarah Wagner ◽  
...  

Abstract Background The long non-coding RNA (lncRNA), MALAT1, plays a key role in the development of different cancers, and its expression is associated with worse prognosis in patients. However, its mechanism of action and its regulation are not well known in prostate cancer (PCa). A general mechanism of action of lncRNAs is their interaction with other epigenetic regulators including microRNAs (miRNAs). Methods Using lentiviral stable miRNA transfection together with cell biology functional assays and gene expression/target analysis, we investigated the interaction between MALAT1 and miR-423-5p, defined as a target with in silico prediction analysis, in PCa. Results Through bioinformatic analysis of data available from TCGA, we have found that MALAT1 expression correlates with high Gleason grade, metastasis occurrence, and reduced survival in PCa patients. These findings were validated on a TMA of PCa showing a significant correlation between MALAT1 expression with both stage and grading. We report that, in PCa cells, MALAT1 expression and activity is regulated by miR-423-5p that binds MALAT1, downregulates its expression and inhibits its activity in promoting proliferation, migration, and invasion. Using NanoString analysis, we unraveled downstream cell pathways that were affected by miR-423-5p expression and MALAT1 downregulation and identified several alterations in genes that are involved in metastatic response and angiogenic pathways. In addition, we showed that the overexpression of miR-423-5p increases survival and decreases metastases formation in a xenograft mouse model. Conclusions We provide evidence on the role of MALAT1 in PCa tumorigenesis and progression. Also, we identify a direct interaction between miR-423-5p and MALAT1, which results in the suppression of MALAT1 action in PCa.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Ashok Jadon ◽  
Rajendra Kumar Sahoo ◽  
Santosh Kumar Sharma

Abstract Background Lumbar erector spinae plane block (L-ESPB) is being used in fractured hip patients for the postoperative pain relief and as a sole anesthetic technique. Various clinical and cadaveric studies have differences of opinion about its mechanism of action and pathways of local anesthetic spread; however, the role of lumbar plexus (LP) in the mechanism of action is still not considered. In our clinical experience, we observed that the action on LP could be a pathway for the analgesic action of local anesthetic along with paravertebral spread. Case presentation We report here three cases of the fractured hip who were given L-ESPB for postoperative pain management. The radiological examination was done after injection of non-ionic contrast to know the spread of local anesthetic. In two cases, the contrast spread was seen towards LP and in one case spread of contrast was observed towards the paravertebral area. Conclusions Effect of local anesthetic on the lumbar plexus is one of the plausible pathways in L-ESPB for its analgesic mechanism of action.


Neurology ◽  
2022 ◽  
Vol 98 (2) ◽  
pp. 65-72 ◽  
Author(s):  
Tim Denison ◽  
Martha J. Morrell

Neuromodulation devices are approved in the United States for the treatment of movement disorders, epilepsy, pain, and depression, and are used off-label for other neurologic indications. By 2035, advances in our understanding of neuroanatomical networks and in the mechanism of action of stimulation, coupled with developments in material science, miniaturization, energy storage, and delivery, will expand the use of neuromodulation devices. Neuromodulation approaches are flexible and modifiable. Stimulation can be targeted to a dysfunctional brain focus, region, or network, and can be delivered as a single treatment, continuously, according to a duty cycle, or in response to physiologic changes. Programming can be titrated and modified based on the clinical response or a physiologic biomarker. In addition to keeping pace with clinical and technological developments, neurologists in 2035 will need to navigate complex ethical and economic considerations to ensure access to neuromodulation technology for a rapidly expanding population of patients. This article provides an overview of systems in use today and those that are anticipated and highlights the opportunities and challenges for the future, some of which are technical, but most of which will be addressed by learning about brain networks, and from rapidly growing experience with neuromodulation devices.


2022 ◽  
Author(s):  
Recep Polat ◽  
Erdem Çokluk ◽  
Özcan Budak ◽  
Fatıma Betül Tuncer

Abstract Introduction: Nutrition and exposure to various chemicals, including environmental pollution, insecticides, and plant phytoestrogens (having oestrogen-like effects), are environmental factors that affect puberty onset. We aimed to identify the effects of propolis on precocious puberty and the reproductive system in prepubertal female rats (ovary, endometrium, breast).Methods: Thirty-four 25-day-old prepubertal female Sprague-Dawley rats were included in the study. Rats were randomly divided into the propolis (n 17) and control groups (n 17). The primary endpoint was the number of rats that developed vaginal opening (It's a sign of puberty) at 12-day follow-up. In addition, the effect of propolis on ovary, uterus and breast tissue was evaluated.Results: Vaginal patency occurred earlier in the propolis group. At the same time, a greater number of rats developed vaginal opening. The number of ovarian follicles (in all follicles), endometrial thickness, and mammary gland secretory gland area were significantly higher in the propolis group than in the control group (p-values <0.001, <0.001, <0.001, respectively). In addition, Ki-67 activity in the endometrium, breast tissue and ovary was more intense in the propolis group compared to the control group (p-values <0.001, <0.001, <0.001, respectively).Conclusion: Propolis triggers precocious puberty in female rats, possibly by interacting with the oestrogen receptor. The mechanism of action of propolis should be considered before prescribing it. In addition, further studies are needed to explore the mechanism of action of propolis and to determine the component of propolis that triggers puberty.


Sign in / Sign up

Export Citation Format

Share Document