scholarly journals Enhancing Wireless Sensor Networks Routing Protocols based on Cross Layer Interaction

2021 ◽  
Vol 5 (2) ◽  
pp. 52-55
Author(s):  
Reem J. Ismail ◽  
Khalid F. Jasim ◽  
Samar J. Ismael ◽  
Soma A. M. Solaimanzadeh

Wireless sensor networks aim to develop a smart city based on sensing environment. The routing protocols of wireless sensor networks is important to transfer the data in smart cities since sensor nodes have limited power and transmission range. The aim of this research is to enhance wireless sensor networks routing protocols based on proposed cross-layer interaction between physical layer and network layer also a proposed routing table information of wireless sensor nodes is developed to consider the transmission power of neighbor’s nodes to determine the next hop. Cross-layer interaction provides a useful information and effective adaptation for WSN routing protocols. As a result, the proposed routing protocol shows an improvement in network performance when number of intermediate nodes are minimized.

2021 ◽  
Vol 10 (4) ◽  
pp. 1-16
Author(s):  
Vinay Rishiwal ◽  
Preeti Yadav ◽  
Omkar Singh ◽  
B. G. Prasad

In recent era of IoT, energy ingesting by sensor nodes in Wireless Sensor Networks (WSN) is one of the key challenges. It is decisive to diminish energy ingesting due to restricted battery lifespan of sensor nodes, Objective of this research is to develop efficient routing protocol/algorithm in IoT based scenario to enhance network performance with QoS parameters. Therefore, keeping this objective in mind, a QoS based Optimized Energy Clustering Routing (QOECR) protocol for IoT based WSN is proposed and evaluated. QOECR discovers optimal path for sink node and provides better selection for sub-sink nodes. Simulation has been done in MATLAB to assess the performance of QOECR with pre-existing routing protocols. Simulation outcomes represent that QOECR reduces E2E delay 30%-35%, enhances throughput 25%-30%, minimizes energy consumption 35%-40%, minimizes packet loss 28%-32%, improves PDR and prolongs network lifetime 32%-38% than CBCCP, HCSM and ZEAL routing protocols.


Author(s):  
Volodymyr Mosorov ◽  
Sebastian Biedroń ◽  
Taras Panskyi

In the 21st century wireless sensor networks have gained much popularity due to their flexibility. This progress has enabled the use of sensor nodes on an unprecedented scale and opened new opportunities for the so-called ubiquitous computerization. The total freedom of nodes distribution within the wireless network, where the wireless characteristic is one of the greatest advantages of the use of wireless sensor networks, implies its greatest weakness, i.e. the limitation of mobile power sources. To overcome this challenge specialized routing protocols, such as LEACH, were ushered in for making the effective use of the energy of the nodes themselves. The purpose of this article is to show how the life of a sensor network depends on the number of nodes equipped with a mobile limited power source.


2021 ◽  
Vol 10 (4) ◽  
pp. 0-0

In recent era of IoT, energy ingesting by sensor nodes in Wireless Sensor Networks (WSN) is one of the key challenges. It is decisive to diminish energy ingesting due to restricted battery lifespan of sensor nodes, Objective of this research is to develop efficient routing protocol/algorithm in IoT based scenario to enhance network performance with QoS parameters. Therefore, keeping this objective in mind, a QoS based Optimized Energy Clustering Routing (QOECR) protocol for IoT based WSN is proposed and evaluated. QOECR discovers optimal path for sink node and provides better selection for sub-sink nodes. Simulation has been done in MATLAB to assess the performance of QOECR with pre-existing routing protocols. Simulation outcomes represent that QOECR reduces E2E delay 30%-35%, enhances throughput 25%-30%, minimizes energy consumption 35%-40%, minimizes packet loss 28%-32%, improves PDR and prolongs network lifetime 32%-38% than CBCCP, HCSM and ZEAL routing protocols.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Ala’ Khalifeh ◽  
Khalid A. Darabkh ◽  
Ahmad M. Khasawneh ◽  
Issa Alqaisieh ◽  
Mohammad Salameh ◽  
...  

The advent of various wireless technologies has paved the way for the realization of new infrastructures and applications for smart cities. Wireless Sensor Networks (WSNs) are one of the most important among these technologies. WSNs are widely used in various applications in our daily lives. Due to their cost effectiveness and rapid deployment, WSNs can be used for securing smart cities by providing remote monitoring and sensing for many critical scenarios including hostile environments, battlefields, or areas subject to natural disasters such as earthquakes, volcano eruptions, and floods or to large-scale accidents such as nuclear plants explosions or chemical plumes. The purpose of this paper is to propose a new framework where WSNs are adopted for remote sensing and monitoring in smart city applications. We propose using Unmanned Aerial Vehicles to act as a data mule to offload the sensor nodes and transfer the monitoring data securely to the remote control center for further analysis and decision making. Furthermore, the paper provides insight about implementation challenges in the realization of the proposed framework. In addition, the paper provides an experimental evaluation of the proposed design in outdoor environments, in the presence of different types of obstacles, common to typical outdoor fields. The experimental evaluation revealed several inconsistencies between the performance metrics advertised in the hardware-specific data-sheets. In particular, we found mismatches between the advertised coverage distance and signal strength with our experimental measurements. Therefore, it is crucial that network designers and developers conduct field tests and device performance assessment before designing and implementing the WSN for application in a real field setting.


2021 ◽  
Author(s):  
Ramdas Vankdothu ◽  
Hameed Mohd Abdul ◽  
Fatima Husnah ◽  
Subbarao Akkala

Abstract Heterogeneous wireless sensor networks (HWSNs) satisfy researchers' requirements for developing real-world solutions that handle unattended challenges. However, the primary constraint of researchers is the privacy of the sensor nodes. It safeguards the sensor nodes and extensions in the HWSNs. Therefore, it is necessary to develop secure operational systems. Multicast scaling with security and time efficiency is described in heterogeneous wireless sensor networks to maximize network performance while also successfully protecting network privacy. This study evaluates the initial security and time efficiency measures, such as execution time, transmission delay, processing delay, congestion level, and trust measure. Subsequently, the optimal location of the heterogeneous nodes is determined using sigmoid-based fuzzy c-means clustering. Finally, successful cluster routing was achieved via support-value-based particle swarm optimization. The experimental results indicate that the proposed strategy surpasses existing strategies in terms of network delivery ratio, end-to-end delay, throughput, packet delivery, and node remaining energy level.


Author(s):  
Naveen Chilamkurti ◽  
Sohail Jabbar ◽  
Abid Ali Minhas

Network layer functionalists are of core importance in the communication process and so the routing with energy aware trait is indispensable for improved network performance and increased network lifetime. Designing of protocol at this under discussion layer must consider the aforementioned factors especially for energy aware routing process. In wireless sensor networks there may be hundreds or thousands of sensor nodes communicating with each other and with the base station, which consumes more energy in exchanging data and information with the additive issues of unbalanced load and intolerable faults. Two main types of network architectures for sensed data dissemination from source to destination exist in the literature; Flat network architecture, clustered network architecture. In flat architecture based networks, uniformity can be seen since all the network nodes work in a same mode and generally do not have any distinguished role.


2020 ◽  
pp. 372-399
Author(s):  
Naveen Chilamkurti ◽  
Sohail Jabbar ◽  
Abid Ali Minhas

Network layer functionalists are of core importance in the communication process and so the routing with energy aware trait is indispensable for improved network performance and increased network lifetime. Designing of protocol at this under discussion layer must consider the aforementioned factors especially for energy aware routing process. In wireless sensor networks there may be hundreds or thousands of sensor nodes communicating with each other and with the base station, which consumes more energy in exchanging data and information with the additive issues of unbalanced load and intolerable faults. Two main types of network architectures for sensed data dissemination from source to destination exist in the literature; Flat network architecture, clustered network architecture. In flat architecture based networks, uniformity can be seen since all the network nodes work in a same mode and generally do not have any distinguished role.


Author(s):  
Corinna Schmitt ◽  
Georg Carle

Today the researchers want to collect as much data as possible from different locations for monitoring reasons. In this context large-scale wireless sensor networks are becoming an active topic of research (Kahn1999). Because of the different locations and environments in which these sensor networks can be used, specific requirements for the hardware apply. The hardware of the sensor nodes must be robust, provide sufficient storage and communication capabilities, and get along with limited power resources. Sensor nodes such as the Berkeley-Mote Family (Polastre2006, Schmitt2006) are capable of meeting these requirements. These sensor nodes are small and light devices with radio communication and the capability for collecting sensor data. In this chapter the authors review the key elements for sensor networks and give an overview on possible applications in the field of monitoring.


Author(s):  
Habib M. Ammari ◽  
Amer Ahmed

A wireless sensor network is a collection of sensor nodes that have the ability to sense phenomena in a given environment and collect data, perform computation on the gathered data, and transmit (or forward) it to their destination. Unfortunately, these sensor nodes have limited power, computational, and storage capabilities. These factors have an influence on the design of wireless sensor networks and make it more challenging. In order to overcome these limitations, various power management techniques and energy-efficient protocols have been designed. Among such techniques and protocols, geographic routing is one of the most efficient ways to solve some of the design issues. Geographic routing in wireless sensor networks uses location information of the sensor nodes to define a path from source to destination without having to build a network topology. In this paper, we present a survey of the existing geographic routing techniques both in two-dimensional (2D) and three-dimensional (3D) spaces. Furthermore, we will study the advantages of each routing technique and provide a discussion based on their practical possibility of deployment.


Sign in / Sign up

Export Citation Format

Share Document