delivery ratio
Recently Published Documents


TOTAL DOCUMENTS

1230
(FIVE YEARS 703)

H-INDEX

20
(FIVE YEARS 9)

2022 ◽  
Vol 13 (2) ◽  
pp. 1-14
Author(s):  
Ankit Temurnikar ◽  
Pushpneel Verma ◽  
Gaurav Dhiman

VANET (Vehicle Ad-hoc Network) is an emerging technology in today’s intelligent transport system. In VANET, there are many moving nodes which are called the vehicle running on the road. They communicate with each other to provide the information to driver regarding the road condition, traffic, weather and parking. VANET is a kind of network where moving nodes talk with each other with the help of equipment. There are various other things which also make complete to VANET like OBU (onboard unit), RSU (Road Aside Unit) and CA (Certificate authority). In this paper, a new PSO enable multi-hop technique is proposed which helps in VANET to Select the best route and find the stable cluster head and remove the malicious node from the network to avoid the false messaging. The false can be occurred when there is the malicious node in a network. Clustering is a technique for making a group of the same type node. This proposed work is based on PSO enable clustering and its importance in VANET. While using this approach in VANET, it has increased the 20% packet delivery ratio.


2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

A novel secure energy aware game theory (SEGaT) method has proposed to have better coordination in wireless sensor actor networks. An actor has a cluster of sensor nodes which is required to perform different action based on the need that emerge in the network individually or sometime with coordination from other actors. The method has different stages for the fulfilment of these actions. Based on energy aware actor selection (EAAS), selection of number of actors and their approach is the initial step followed by the selection of best team of sensors with each actor to carry out the action and lastly the selection of reliable node within that team to finally nail the action into place in the network for its smooth working and minimum compromise in the energy The simulations are done in MATLAB and result of the energy and the packet delivery ratio are compared with game theory (GaT) and real time energy constraint (RTEC) method. The proposed protocol performs better in terms of energy consumption, packet delivery ratio as compared to its competitive protocols.


2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

Due to the absence of routing initiation, the routing protocol requires a secure message transition. The key downside is that there are many current routing protocols. The big downside is the inability of the node to give a message when the attackers are routing. The key attack in the proposed routing model is Distributed Denial of Service (DDOS). The Protected Geographic Routing Protocol (SGRP) is the assured routing carried out in the proposed work. The Protected Geographic Routing Protocol (SGRP) will improve the efficiency of the transmission method by choosing a specific source node. The paper suggested that the Protected Spatial Routing Protocol (PSRP) would recognize and isolate such threats. Several modeling time estimation studies have been carried out to analyze the simulation time and the efficiency of the proposed routing technique. The proposed routing technique demonstrates the performance by calculating the Packets Delivery Ratio(PDR) and Energy consumption. The Routing protocol is used in many applications such as the Industrial Internet of Things (IoT)


2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

Wireless Multimedia Sensor Networks (WMSNs) have been used in many applications and powerful distributed systems. But the performance of WMSNs is suffering from the occurrence of energy holes. To improve the performance of the network and packet delivery ratio, a Voronoi-Ant colony based Routing (VoR-Ant-R) algorithm is proposed for WMSNs to discover the energy holes and finds the shortest path from the source to destination in the WMSNs even though faces some obstacles. The WMSNs are constructed using the Voronoi structure to bypass energy holes. After bypassing the energy hole in the path; an ACO is introduced to select a neighborhood node for data forwarding. This ACO constructs the shortest optimized path to enhance the performance of the WMSNs. The proposed work is experimentally compared with other algorithms such as IEEABR, EEABR, SC, and BEES. The simulation results show that VoR-Ant-R can increase energy efficiency, success rate, reduces energy consumption, and latency.


Author(s):  
Nirbhay Kumar Chaubey ◽  
Dhananjay Yadav

<span>Vehicular ad hoc network (VANET) is an emerging technology which can be very helpful for providing safety and security as well as for intelligent transportation services. But due to wireless communication of vehicles and high mobility it has certain security issues which cost the safety and security of people on the road. One of the major security concerns is the Sybil attack in which the attacker creates dummy identities to gain high influence in the network that causes delay in some services and fake voting in the network to misguide others. The early detection of this attack can prevent people from being misguided by the attacker and save them from getting into any kind of trap. In this research paper, Sybil attack is detected by first applying the Poisson distribution algorithm to predict the traffic on the road and in the second approach, analysis of the network performance for packet delivery ratio (PDR) is performed in malign and benign environment. The simulation result shows that PDR decreases in presence of fake vehicles in the network. Our approach is simple and effective as it does not require high computational overhead and also does not violate the privacy issues of people in the network.</span>


Author(s):  
Vu Khanh Quy ◽  
Pham Minh Chuan ◽  
Le Anh Ngoc

Mobile ad-hoc networks (MANETs) is a set of mobile devices that can self-configuration, self-established parameters to transmission in-network. Although limited inability, MANETs have been applied in many domains to serve humanity in recent years, such as disaster recovery, forest fire, military, intelligent traffic, or IoT ecosystems. Because of the movement of network devices, the system performance is low. In order to MANETs could more contribution in the future of the Internet, the routing is a significant problem to enhance the performance of MANETs. In this work, we proposed a new delay-based protocol aim enhance the system performance, called performance routing protocol based on delay (PRPD). In order to analyze the efficiency of the proposed solution, we compared the proposed protocol with traditional protocols. Experiment results showed that the PRPD protocol improved packet delivery ratio, throughput, and delay compared to the traditional protocols.


2022 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Yelena Trofimova ◽  
Pavel Tvrdík

In wireless ad hoc networks, security and communication challenges are frequently addressed by deploying a trust mechanism. A number of approaches for evaluating trust of ad hoc network nodes have been proposed, including the one that uses neural networks. We proposed to use packet delivery ratios as input to the neural network. In this article, we present a new method, called TARA (Trust-Aware Reactive Ad Hoc routing), to incorporate node trusts into reactive ad hoc routing protocols. The novelty of the TARA method is that it does not require changes to the routing protocol itself. Instead, it influences the routing choice from outside by delaying the route request messages of untrusted nodes. The performance of the method was evaluated on the use case of sensor nodes sending data to a sink node. The experiments showed that the method improves the packet delivery ratio in the network by about 70%. Performance analysis of the TARA method provided recommendations for its application in a particular ad hoc network.


2022 ◽  
Author(s):  
Sangeetha Ganesan ◽  
Vijayalakshmi Muthuswamy

Abstract Congestion control for real time traffic is an important network measure to be handled in case of repeated event triggers, continuous packet re-transmissions, node interference, node deaths and node failures in Wireless Sensor Networks (WSNs). Network modelling for transmission of packets from source node to sink using probabilistic M/Pareto and Poisson processes have been examined in the past. The existing methodologies are deficit in designing a queuing framework considering other network parameters such as energy consumption and delay for alleviating congestion and thereby efficiently routing packets to sink by reducing packet drops. To overcome this fall back, a Minimum Weight Estimation for Mitigating Congestion during Real Time Burst Traffic (MWCBT) framework is proposed. This gives a precautionary solution against heavy traffic occupancy among the interim and sink-neighbouring nodes in WSNs is proposed. Routing of packets using a congestion-free path is required to increase the node lifespan. An optimal M/Pareto stochastic traffic generator is used in combination with traffic factors such as energy and delay to predict amount of traffic across nodes. A simpler congestion prediction mechanism is performed to control the occurrence of heavy-tailed traffic distributions. A torrent weight value for incoming traffic is generated at each node periodically that directs routing of data packets to sink. The devised MWCBT framework supervises real-time traffic congestion and is found to be more optimal than the existing approaches for network traffic modelling. The proposed approach achieves greater packet delivery ratio and less node congestion compared to the existing network modelling techniques.


Author(s):  
C. Sapna Kumari ◽  
C. N. Asha ◽  
U. Rajashekhar ◽  
K. Viswanath

At present, due to the various hacking approaches, the protection for any data transmitted through any channel or mode is one of the important issues. Nowadays, providing data security is satisfactory, developments are extended for obtaining data among the transceivers. Security level depends on the size of a symmetric key which is employed for encryption and decryption using various cryptography systems management and in modern approaches like block and RF codes including AES use a larger size of key simultaneously and there exists security problems due to hacking approaches. To illustrate the protection level and hacking problems, a new ECC is presented as well as by employing scalar duplication, the synchronous key is generated and consists of point doubling and point addition. The created focuses are encrypted before transmission by using ECC-Elgamal-Holomorphic (ECCEH) and transferred through a distant channel and encipher data is failed at the receiver using ECCEH which includes the reverse process. The unique standards of cryptography context have been generated by MATLAB; the defined framework has endeavored to the extent that speed, delay as well as control, and many others are accepted in MATLAB 2017a. The user of the sender, the original information is transformed into integer value by employing Holomorphic and encodes it by utilizing the Elgamal ECC algorithm which employs point doubling and point addition. The encoded information is uploaded into the cloud for storage, here www.thingspeak.com is utilized for storage. When the user presents at the receiver request the cloud to access from it, initially the cloud server authenticates the access control strategies of the requester, and then access is provided by the cloud server. If the user authenticates the strategies, then encoded data can download and the original data is decoded by synchronous key employing ECC- Elgamal algorithm. Using original and decrypted data, various performance factors are calculated in terms of execution time, packet delivery ratio, throughput, latency and compare these results with conventional methods and found to be 12%, 31%, 24%, and 8% progress concerned with packet delivery ratio, latency, outturn and execution time.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 141
Author(s):  
Tomislav Senčić ◽  
Vedran Mrzljak ◽  
Vedran Medica-Viola ◽  
Igor Wolf

The scavenging process is an important part of the two-stroke engine operation. Its efficiency affects the global engine performance such as power, fuel consumption, and pollutant emissions. Slow speed marine diesel engines are uniflow scavenged, which implies inlet scavenging ports on the bottom of the liner and an exhaust valve on the top of the cylinder. A CFD model of such an engine process was developed with the OpenFOAM software tools. A 12-degree sector of the mesh was used corresponding to one of the 30 scavenging ports. A mesh sensitivity test was performed, and the cylinder pressure was compared to experimental data for the analyzed part of the process. The scavenging performances were analyzed for real operation parameters. The influence of the scavenge air pressure and inlet ports geometric orientation was analyzed. The scavenging process is analyzed by means of a passive scalar representing fresh air in the cylinder. Isosurfaces that show the concentration of fresh air were presented. The variation of oxygen and carbon dioxide with time and the axial and angular momentum in the cylinder were calculated. Finally, the scavenging performance for the various operation parameters was evaluated by means of scavenging efficiency, charging efficiency, trapping efficiency, and delivery ratio. It was found that the scavenging efficiency decreases with the engine load due to the shorter time for the process. The scavenging efficiency increases with the pressure difference between the exhaust and scavenging port, and the scavenging efficiency decreases with the increase in the angle of the scavenging ports. It was concluded that smaller angles than the industry standard of 20° could be beneficial to the scavenging efficiency. In the investigation, the charging efficiency ranged from 0.91 to over 0.99, the trapping efficiency ranged from 0.54 to 0.83, the charging efficiency ranged from 0.78 to 0.92, and the delivery ratio ranged from 1.21 to 2.03.


Sign in / Sign up

Export Citation Format

Share Document