Synthesis of a novel UV-curable prepolymer 1,3-bis[(3-ethyl-3-methoxyoxetane)propyl]tetramethyldisiloxane and study on its UV-curing properties

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Cheng Chen ◽  
Bi-Wu Huang ◽  
Zheng-Ting Lu ◽  
Yang Wu

Abstract Precursor 3-ethyl-3-hydroxymethyloxetane was synthesized with trihydroxypropane and diethyl carbonate as the main raw materials. Intermediate 3-ethyl-3-allylmethoxyoxetane was synthesized with 3-ethyl-3-hydroxymethyloxetane and allyl bromide. Prepolymer 1,3-bis[(3-ethyl-3-methoxyoxetane)propyl]tetramethyldisiloxane was synthesized with 3-ethyl-3-allylmethoxyoxetane and 1,1,3,3-tetramethyldisiloxane. Cationic photoinitiator triarylsulfonium hexafluoroantimonate of 3 wt% was added to the prepolymer, and a novel kind of photosensitive resin was prepared. Structures of the compounds obtained at individual stages of the synthesis were analyzed and characterized by FTIR and 1H-NMR. Photo-DSC analysis showed that the prepolymer had excellent photosensitivity. Thermogravimetric analysis (TG) revealed that the ultraviolet (UV)-cured samples owned excellent thermal stabilities of up to 405°C. And the mechanical properties of the UV-cured samples were tested by the universal material testing machine, giving 25.95 MPa of tensile strength, 2,935.15 MPa of elastic modulus, and 4.09% of elongation at break.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2573
Author(s):  
Yuansheng Liu ◽  
Biwu Huang ◽  
Wenbin Zhou ◽  
Weiqing Chen ◽  
Yang Wu

Precusor EHO(3-ethyl-3-hydroxymethyloxetane) was synthesized with diethyl carbonate and trihydroxypropane as the main raw materials. Intermediate AllyEHO(3-ethyl-3-allylmethoxyoxetane) was synthesized with 3-ethyl-3-hydroxymethyloxetane and allyl bromide as the main raw materials. Prepolymer bis[(3-ethyl-3-methoxyoxetane)propyl]diphenylsilane was synthesized with 3-ethyl-3-methoxyoxetane)propyl and diphenylsilane. Photoinitiator triarylsulfonium hexafluoroantimonate of 3% was added to the prepolymer, and a novel kind of the photosensitive resin was prepared. They were analyzed and characterized with FTIR and 1H-NMR. Photo-DSC examination revealed that the bis[(3-ethyl-3-methoxyoxetane)propyl]diphenylsilane has great photosensitivity. The thermal properties and mechanical properties of the photosensitive resin were examined by TGA and a microcomputer-controlled universal material testing machine, with thermal stabilities of up to 446 °C. The tensile strength was 75.5 MPa and the bending strength was 49.5 MPa. The light transmittance remained above 98%.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Jianyun He ◽  
Jinping Xiong ◽  
Bingqian Xia

AbstractOrganic-inorganic hybrid films were prepared using tetraethylorthosilicate (TEOS) oligomer and special acrylated polyester (SAP) via a UV-curing process. TEOS oligomers were prepared in the presence of water and ethanol using hydrochloric acid as the catalyst and characterized using 1H NMR, 29Si NMR and MALDI-TOF mass spectra. Special acrylated polyester was synthesized by 1,4-cyclohexane dimethanol, neopentyl glycol, 1,4-butanediol, maleic anhydride, adipic acid, and acrylic acid. Hybrid films were cured by UV light and the thermal properties, dynamic mechanical properties, and tensile properties of the hybrid films were evaluated as the function of TEOS oligomer content. The morphology of the hybrid films was examined using atomic force microscopy (AFM). The microscopy and dynamic mechanical data indicated that the hybrid films were heterogeneous materials with various inorganic particle sizes dispersed within the organic matrix. The results indicated that after incorporating the TEOS oligomer, the strength and thermal stability of the hybrid films were enhanced.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1084
Author(s):  
Dong Liang ◽  
Ning Wang ◽  
Yuxiang Wang ◽  
Zhenjie Liu ◽  
Ying Fu

In this paper, the microstructure and properties of as-cast Cu-Y-Zr alloys with different Zr content were studied in order to investigate whether the precipitates in copper alloys would interact with each other by adding Y and Zr simultaneously. As-cast Cu-0.5Y-xZr (wt.%, x = 0.05 and 0.1, nominal composition) alloys were prepared by vacuum melting in this study. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to observe the microstructure of the alloys. The mechanical properties of the alloys were tested by universal material testing machine at room temperature. The effects of Zr content on the microstructure and mechanical properties of the alloys were explored. As shown by the research results, in the as-cast Cu-0.5Y-xZr (wt.%) alloys, the precipitated phase was the Cu5Y/Cu5Zr phase and ranged from 10 nm to 70 nm in size; when the Zr content increased from 0.05 wt.% to 0.1 wt.%, both the tensile strength and elongation rate of the alloys increased; when the Zr content was 0.1 wt.%, the tensile strength was 225 MPa and the elongation rate was 22.5%.


2014 ◽  
Vol 665 ◽  
pp. 348-351
Author(s):  
Shu Fang Lv ◽  
Shi Jie Niu ◽  
Ying Bin Liu ◽  
Ming Tao Run

Poly (trimethylene terephthalate)/acrylonitrile-styrene-acrylic copolymer blends were prepared and their morphology, thermal aging and mechanical properties were investigated by using the polarized optical microscopy, universal material testing machine and color-difference meter, repectively. The results suggest that ASA and PTT are partially miscible in the blends, and when TPEE content is 50%, a bi-continuous phases form in the blend. The PTT’s spherulites in the blends become smaller and even microcrystallites with increasing ASA content. ASA component has good effect on toughen PTT by increasing blends’ impact strength but depresses the tensile strength of the blends. ASA has no influence on the thermal aging properties of PTT, and PTT/ASA blend has better thermal aging resistance than that of PTT/ABS blend.


2014 ◽  
Vol 1044-1045 ◽  
pp. 128-132
Author(s):  
Chen Jie Shi ◽  
Xiao Yan Li ◽  
Xia Wang ◽  
Yuan Wen Wang ◽  
Zhen Lu ◽  
...  

To improve the compatibility of montmorillonite (MMT) with polymer. A kind of organic intercalation agent was applied in the intercalating organic modification of montmorillonite (OMMT) through ion exchange method, and a kind of silane coupling agent was further used to do the organic treatment. The SEBS/OMMTs composites were also prepared by melt blending. Structure and characterization of the modified MMTs were investigated by Fourier Transform infrared (FT-IR), wide angle X-ray diffraction (WAXRD), and the thermal stability were characterized by Thermogravimetric analysis (TGA). The dispersion status of MMTs were evaluated by scanning electron microscope (SEM) and the composites were tested by universal material testing machine. The FTIR results initial displayed that OMMTs had the absorption peak of organic functional groups. The XRD results showed that compared to Na+-MMT(1.47 nm), the layer spacing of H-OMMT increased to 3.27 nm, the above two results showed the organic modification of MMT had succeed. The results of TGA showed that OMMTs had a weight loss of organics. The SEM demonstrated that H-OMMT had the best dispersion status in SEBS matrix, and Na+-MMT was the worst.


2011 ◽  
Vol 217-218 ◽  
pp. 1170-1173
Author(s):  
Wei Wei Qiao ◽  
Hui Wang ◽  
Yan Hua Zhao ◽  
Yi Xia Han

We investigate the mechanical properties of Poly Vinyl Chloride (PVC)/ acrylnitrile-butadiene-styrene copolymer (ABS) composite material with an impact testing machine,a material testing machine and other accessory devices. The result shows that the mechanical properties of PVC/ABS composite are a function of composition, the addition of ABS improved the mechanical properties of PVC/ ABS composite,the impact strength and elongation at break rise significantly with increasing ABS content in PVC/ABS composite and appears maximum value,While the tensile strength and modulus almost decrease monotonously with increasing ABS content in PVC/ABS composite.


2009 ◽  
Vol 610-613 ◽  
pp. 1327-1330
Author(s):  
Yu Ling Hu ◽  
Xue Bao Yu ◽  
Wei Dong Miao ◽  
Gang Liu

A new correction instrument of pectus excavatum is introduced which is designed for a minimally invasive technique (Nuss procedure). The instrument was made of pure titanium plates, and finished by machining, surface treatment and so on. The instrument was made up of correcting bar and fixing bar. The mechanical properties of the instrument was measured with electron universal material testing machine, the safety and validity was verified by clinical doctors after being implanted into the patient. Results showed that the mechanical properties of the instrument keep constantly after implantation for two years. It is lighter than the like product, and can lighten the patent’s and the doctor’s operation bearing. It had been applied in national hospitals, and results showed that it was of better biocompatibility, and few complications were found. Clinical treatment effects were satisfactory.


2011 ◽  
Vol 181-182 ◽  
pp. 39-42
Author(s):  
Ming Tao Run ◽  
Qing Chang Zhang ◽  
Wen Zhou ◽  
Yu Zhong

The crystal morphology, melt-crystallization and mechanical properties of poly (trimethylene terephthalate)/maleinized poly (octene-ethylene)/organo-montmorillonite nanocomposites were investigated by using polarized optical microscopy (POM), differential scanning calorimetry (DSC) and universal material testing machine, respectively. The results suggest that the nanocomposites form smaller or imperfect microcrystallites with lower melting point due to the influence of OMMT components and the nanocomposites have increased crystallization rate because OMMT is an effective nucleation agent. However, the crystallinity decreases because of the thickening effect of OMMT in the composites. The nanocomposite with 2%OMMT has the largest tensile and impact strength.


2019 ◽  
Author(s):  
Irzal ◽  
syahrul

by using connection type I. To get a good welding result is determined several factors, including the properties of material welding, connection type, welding position, and electrode used. In a welding project, there is still a welder that only uses I in the weld IWF 400 connecting iron while the thickness of the material 13 mm. This study aims to determine the effect of the use of campuh against the strength of weld joint connection using LB 52U 2.6 mm Electrode and RD 7018 3.2 mm electrode with AC Flow. In this study using experimental method begins with making specimens. With the collection of 7 specimens consisting of 3 specimens with welding treatment using Camp V, 3 specimens with welding treatment using Camp I and 1 IWF 400 specimens without welding treatment. From the results of research conducted on specimens by making and testing specimens with a tensile test machine Hydraullic Universal Material Testing Machine then obtained on the specimen without welding average value of Maximum (max) 41,28 kgf/mm². In welded specimens with a connection of the V values the average value of the Maximum (max) 39,82 kgf/mm². On a welded specimen with a maximum I knot connection (max) 38,32 kgf/mm².The results of this study indicate the results of iron welding IWF 400 using camp V greater value voltage 39.82 kgf / mm². From the maximum voltage value obtained from this study it is recommended that iron welding IWF 400 uses V.


2018 ◽  
Vol 921 ◽  
pp. 236-245
Author(s):  
Yong Dong He ◽  
Xin Feng Zhou ◽  
Chu Chen ◽  
Ting Ju Li

Evolution laws of structure and performance of Cu-10Ni-1Fe-1Mn alloy in the process of continuous casting-planetary rolling-drawing deformation were studied by OM, SEM, TEM, Brinell Hardness tester and universal material testing machine. Results demonstrated that the alloy ingot is composed of thick dendrites. The ingot makes grain crushing and dynamic recrystallization after planetary rolling. The hot rolling samples still have abundant fine recrystallization textures after multi-pass drawings. Due to roller-core head or internal-external mold opposite pressure, dislocations in different regions of sample move along the glide plane, forming a macroscopic slip band. Two adjacent macroscopic slip zones which move toward opposite directions compose the folded structures after the deformation. Refined crystalline strengthening, solution strengthening of Fe, Ni and Mn, work hardening, and iron-containing particle precipitation are major causes of alloy strengthening. SEM analysis of tensile fracture demonstrated that the material still maintained good plasticity after rolling and drawing deformation. However, material plasticity declined with the increase of cold processing-induced deformation.


Sign in / Sign up

Export Citation Format

Share Document