scholarly journals MICROMORPHOLOGY OF THE SURFACE OF RAPIDLY QUENCHED HEUSLER- ALLOYS

Author(s):  
Александра Ивановна Иванова ◽  
Александр Дмитриевич Зигерт ◽  
Сергей Андреевич Третьяков ◽  
Елена Михайловна Семенова ◽  
Эльвина Тимербулатовна Дильмиева ◽  
...  

В работе представлены результаты исследований микро- и наноструктуры поверхности быстрозакаленных лент сплавов Гейслера (NiMnAl,NiMn AlSi, NiCoMn Al) методами сканирующей электронной и атомно-силовой микроскопии. Рассмотрено влияние химического состава на размер, геометрию границ и структуру зерен. Показано, что все исследуемые образцы обладают наноразмерным мартенситным рельефом, определены его параметры. Установлено, что поперечное сечение лент представлено кристаллическими зернами разной формы и размера, что обусловлено отличием скоростей охлаждения по краям и в центре ленты. Проведено элементное картирование поверхности поперечного сечения лент с помощью рентгеновского энергодисперсионного спектрометра, установлено равномерное распределение химических элементов в образцах. Показано, что легирование лент состава NiMnAl кобальтом вызывает изменение микроморфологии поверхности и оказывает значительное влияние на ход полевых зависимостей намагниченности и доменную структуру образцов. The paper describes the results of the scanning electronic and atomic force microscopy research of the surface structure of the NiMn Al, NiMn AlSi, NiCoMnAl rapidly quenched ribbons. The influence of the chemical composition on the size, boundary geometry and structure of the grains is considered. It is shown that all the test samples have a nano-sized martensitic relief, and its parameters are determined. It has been established that the cross section of the ribbon is represented by crystalline grains of different shapes which are due to differences in the cooling rates along the edges and in the center of the samples. Elemental mapping of the cross-sectional surface of the ribbons was carried out using an X-ray energy dispersive spectrometer, and a uniform distribution of chemical elements in the samples was established. It is shown that the cobalt doping of NiMn Al ribbon causes changes in the micromorphology of the surface and has a significant effect on the magnetic properties of rapidly quenched ribbons: field dependences of themagnetization and domain structure.

2019 ◽  
Vol 54 (1) ◽  
pp. 45-60 ◽  
Author(s):  
Abhishek Sharma ◽  
Vyas Mani Sharma ◽  
Jinu Paul

Friction stir alloying is primarily employed for the fabrication of surface composite to improve surface properties like hardness, wear resistance, and corrosion resistance without significantly affecting the bulk properties of the alloy. The present study demonstrates the novel method for the fabrication of bulk aluminum-graphene nanoplatelets composite by using friction stir alloying. Here, the novelty is shown through the method of graphene nanoplatelets incorporation in the stir zone. For this purpose, a channel is fabricated on the cross-sectional surface of the aluminum plate and filled with graphene nanoplatelets. It is then covered by the cross-sectional surface of another aluminum plate of same dimensions and friction stir alloying is carried out. Reference material (RM) is also fabricated at the same parameters without any graphene nanoplatelet reinforcements for the performance evaluation of the nanocomposite. The microhardness of the fabricated composite increased by ∼57% as compared to the reference material. However, the tensile strength of the fabricated Al-graphene nanoplatelet composites decreased marginally as compared to reference material. The strengthening of the composite is explained systematically by various mechanisms. The results of microhardness and tensile test were corroborated with various characterization methods such as optical micrographs, scanning electron microscopy, atomic force microscope, and X-ray diffraction.


1999 ◽  
Vol 75 (17) ◽  
pp. 2626-2628 ◽  
Author(s):  
A. V. Ankudinov ◽  
A. N. Titkov ◽  
T. V. Shubina ◽  
S. V. Ivanov ◽  
P. S. Kop’ev ◽  
...  

1995 ◽  
Vol 30 (3) ◽  
pp. 678-682 ◽  
Author(s):  
Hee Jeen Kim ◽  
Jae Sung Kim ◽  
Yong Kim ◽  
Moo Sung Kim ◽  
Suk-Ki Min

2006 ◽  
Vol 38 (2) ◽  
pp. 117-123 ◽  
Author(s):  
Z. Jaksic ◽  
M. Maksimovic ◽  
D. Vasiljevic-Radovic ◽  
M. Sarajlic

Owing to their surface plasmon-based operation, arrays of subwavelength holes show extraordinary electromagnetic transmission and intense field localizations of several orders of magnitude. Thus they were proposed as the basic building blocks for a number of applications utilizing the enhancement of nonlinear optical effects. We designed and simulated nanometer-sized subwavelength holes using an analytical approach. In our experiments we used the scanning probe method for nanolithographic fabrication of subwavelength hole arrays in silver layers sputtered on a positive photoresist substrate. We fabricated ordered nanohole patterns with different shapes, dispositions and proportions. The smallest width was about 60 nm. We characterized the fabricated samples by atomic force microscopy.


Author(s):  
Sudheer Neralla ◽  
Sergey Yarmolenko ◽  
Dhananjay Kumar ◽  
Devdas Pai ◽  
Jag Sankar

Alumina is a widely used ceramic material due to its high hardness, wear resistance and dielectric properties. The study of phase transformation and its correlation to the mechanical properties of alumina is essential. In this study, interfacial adhesion properties of alumina thin films are studied using cross-sectional nanoindentation (CSN) technique. Alumina thin films are deposited at 200 and 700 °C, on Si (100) substrates with a weak Silica interface, using pulsed laser deposition (PLD) process. Effect of annealing on the surface morphology of the thin films is studied using atomic force microscopy. Xray diffraction studies revealed that alumina thin films are amorphous in nature at 200 °C and polycrystalline with predominant gamma alumina phase at 700 °C.


2020 ◽  
Vol 1004 ◽  
pp. 414-420
Author(s):  
Junro Takahashi ◽  
Kotaro Kawaguchi ◽  
Kazuhiko Kusunoki ◽  
Tomoyuki Ueyama ◽  
Kazuhito Kamei

We have studied the microstructure of the growth surface of the 4H-SiC grown by the m-face solution growth. Atomic Force Microscopy (AFM) revealed the micro-striped morphology with the asperity of several nm in the band-like morphology region. The cross-sectional Transmission Electron Microscopy (XTEM) showed that the growth surface consisted of a bunch of nanofacets and vicinal surface. This peculiar morphology is totally different from that of conventional spiral growth on c-face, which can be closely related with the growth mechanism of the m-face solution growth.


2008 ◽  
Vol 381-382 ◽  
pp. 525-528 ◽  
Author(s):  
B.L. Wang ◽  
Han Huang ◽  
Jin Zou ◽  
Li Bo Zhou

Silicon (100) substrates machined by chemo-mechanical-grinding (CMG) and chemicalmechanical- polishing (CMP) were investigated using atomic force microscopy, cross-sectional transmission electron microscopy and nanoindentation. It was found that the substrate surface after CMG was slightly better than machined by CMP in terms of roughness. The transmission electron microscopy analysis showed that the CMG-generated subsurface was defect-free, but the CMP specimen had a crystalline layer of about 4 nm in thickness on the top of the silicon lattice as evidenced by the extra diffraction spots. Nanoindentation results indicated that there exists a slight difference in mechanical properties between the CMG and CMP machined substrates.


1997 ◽  
Vol 482 ◽  
Author(s):  
Y. Cho ◽  
S. Rouvimov ◽  
Y. Kim ◽  
Z. Liliental-Weber ◽  
E. R. Weber

AbstractThe incorporation of nitrogen into sapphire substrates during nitridation was studied by xray photoelectron spectroscopy (XPS). An increase in the intensity of nitrogen 1s peak in XPS was observed upon longer nitridation. The surface morphology of the substrates was characterized by atomic force microscopy (AFM). High resolution electron microscopy (HREM) was employed for structural analysis. The cross sectional TEM showed a thin layer of AlN buried between amorphous AlNxO1−x and sapphire. This is the first direct observation of AlN on sapphire. The TEM images show a deeper penetration depth of nitrogen into a longer nitridated sapphire.


Sign in / Sign up

Export Citation Format

Share Document