scholarly journals PI-D CONTROLLER BASED ON AN IMPROVED CROW SEARCH ALGORITHM FOR CANCER GROWTH TREATMENT

2021 ◽  
Vol 25 (6) ◽  
pp. 82-90
Author(s):  
Mohammed A. Hussein ◽  
◽  
Ekhlas H. Karam ◽  

The number of cancer diagnoses and deaths worldwide is rising every year despite technological advancements in diagnosing and treating multiple forms of cancer. An oncolytic virus is a type of tumour-killing virus that can infect and analyze cancer cells while mostly preserving normal cells. The oncolytic Vesicular-Stomatitis Virus therapeutic's cell cycle-specific action mathematically investigated. An optimal Proportion Integral-Derivative (PI-D) controller is introduced in this paper based on a suggested Improved Crow Search Algorithm (ICSA) to enhance the outcome of oncolytic virotherapy. The control technique was tested in a computer using MATLAB simulation. The suggested ICSA is used to tune the parameters of the PI-D controller. The ICSA used the inertia factor and boundary handle mechanism in the position update equation to balance exploration and exploitation. The simulation results show that decrease in total dose, tumour cells to 30%, the tumour remain in the treatment area from day 30 onwards. Furthermore, the ICSA algorithm outperforms the CSA and PSO algorithms by 34.5497×10-6 and 15.2573 ×10-6, respectively, indicating the robustness of treatment methods that can accomplish tumour reduction through biological parameters ambiguity.

2018 ◽  
Vol 92 (16) ◽  
Author(s):  
Saskia D. van Asten ◽  
Matthijs Raaben ◽  
Benjamin Nota ◽  
Robbert M. Spaapen

ABSTRACT Cellular antiviral programs can efficiently inhibit viral infection. These programs are often initiated through signaling cascades induced by secreted proteins, such as type I interferons, interleukin-6 (IL-6), or tumor necrosis factor alpha (TNF-α). In the present study, we generated an arrayed library of 756 human secreted proteins to perform a secretome screen focused on the discovery of novel modulators of viral entry and/or replication. The individual secreted proteins were tested for the capacity to inhibit infection by two replication-competent recombinant vesicular stomatitis viruses (VSVs) with distinct glycoproteins utilizing different entry pathways. Fibroblast growth factor 16 (FGF16) was identified and confirmed as the most prominent novel inhibitor of both VSVs and therefore of viral replication, not entry. Importantly, an antiviral interferon signature was completely absent in FGF16-treated cells. Nevertheless, the antiviral effect of FGF16 is broad, as it was evident on multiple cell types and also on infection by coxsackievirus. In addition, other members of the FGF family also inhibited viral infection. Thus, our unbiased secretome screen revealed a novel protein family capable of inducing a cellular antiviral state. This previously unappreciated role of the FGF family may have implications for the development of new antivirals and the efficacy of oncolytic virus therapy. IMPORTANCE Viruses infect human cells in order to replicate, while human cells aim to resist infection. Several cellular antiviral programs have therefore evolved to resist infection. Knowledge of these programs is essential for the design of antiviral therapeutics in the future. The induction of antiviral programs is often initiated by secreted proteins, such as interferons. We hypothesized that other secreted proteins may also promote resistance to viral infection. Thus, we tested 756 human secreted proteins for the capacity to inhibit two pseudotypes of vesicular stomatitis virus (VSV). In this secretome screen on viral infection, we identified fibroblast growth factor 16 (FGF16) as a novel antiviral against multiple VSV pseudotypes as well as coxsackievirus. Subsequent testing of other FGF family members revealed that FGF signaling generally inhibits viral infection. This finding may lead to the development of new antivirals and may also be applicable for enhancing oncolytic virus therapy.


Author(s):  
Ehab S. Ghith ◽  
◽  
Mohamed Sallam ◽  
Islam S. M. Khalil ◽  
Mohamed Youssef Serry ◽  
...  

One of the main difficult tasks in the field of micro-robotics is the process of the selection of the optimal parameters for the PID controllers. Some methods existed to solve this task and the common method used was the Ziegler and Nichols. The former method require an accurate mathematical model. This method is beneficial in linear systems, however, if the system becomes more complex or non-linear the method cannot produce accurate values to the parameters of the system. A solution proposed for this problem recently is the application of optimization techniques. There are various optimization techniques can be used to solve various optimization problems. In this paper, several optimization methods are applied to compute the optimal parameter of PID controllers. These methods are flower pollination algorithm (FPA), grey wolf optimization (GWO), sin cosine algorithm (SCA), slime mould algorithm (SMA), and sparrow search algorithm (SSA). The fitness function applied in the former optimization techniques is the integral square Time multiplied square Error (ISTES) as the performance index measure. The fitness function provides minimal rise time, minimal settling time, fast response, and no overshoot, Steady state error equal to zero, a very low transient response and a non-oscillating steady state response with excellent stabilization. The effectiveness of the proposed SSA-based controller was verified by comparisons made with FPA, GWO, SCA, SMA controllers in terms of time and frequency response. Each control technique will be applied to the identified model (simulation results) using MATLAB Simulink and the laboratory setup (experimental results) using LABVIEW software. Finally, the SSA showed the highest performance in time and frequency responses.


Author(s):  
Ehab S. Ghith ◽  
◽  
Mohamed Sallam ◽  
Islam S. M. Khalil ◽  
Mohamed Serry ◽  
...  

The process of tuning the PID controller’s parameters is considered to be a difficult task. Several approaches were developed in the past known as conventional methods. One of these methods is the Ziegler and Nichols that relies on accurate mathematical model of the linear system, but if the system is complex the former method fails to compute the parameters of PID controller. To overcome this problem, recently there exist several techniques based on artificial intelligence such as optimization techniques. The optimization techniques does not require any mathematical model and they are considered to be easy to implement on any system even if it complex, can reach optimal solutions on the parameters. In this study, a new approach to control the position of the micro-robotics system proportional - integral - derivative (PID) controller is designed and a recently developed algorithm based on optimization is known as the sparrow search algorithm (SSA). By using the sparrow search algorithm (SSA), the optimal PID controller parameters were obtained by minimizing a new objective function, which consists of the integral square Time multiplied square Error (ISTES) performance index. The effectiveness of the proposed SSA-based controller was verified by comparisons made with the Sine Cosine algorithm (SCA), and Flower pollination algorithm (FPA) controllers in terms of time and frequency response. Each control technique will be applied to the identified model (simulation results) using MATLAB Simulink and the laboratory setup (experimental results) using LABVIEW software. Finally, the SSA showed the highest performance in time and frequency responses.


2014 ◽  
Vol 3 (2) ◽  
pp. 59-75
Author(s):  
Saifullah Khalid ◽  
Neeraj Kumar ◽  
V.M. Mishra

A novel hybrid series active power filter to eliminate harmonics and compensate reactive power is presented and analyzed. The proposed active compensation technique is based in a hybrid series active filter using adaptive Tabu search (ATS) algorithm in the conventional Sinusoidal Fryze voltage (SFV) control technique. Optimization of the conventional Sinusoidal Fryze voltage control technique has been done using adaptive tabu search algorithm. This paper discusses about the comparative performances of conventional Sinusoidal Fryze voltage control strategy and ATS-optimized controllers. ATS algorithm has been used to obtain the optimum value of Kp and Ki. Analysis of the hybrid series active power filter system under non linear load condition and its impact on the performance of the controllers is evaluated. Effectiveness of the hybrid series active power filter to provide harmonic damping is demonstrated by MATLAB/Simulink results. Total harmonic distortion (THD) demonstrates the practical viability of the controller for hybrid series active power filter to provide harmonic isolation of non-linear loads and to comply with IEEE 519 recommended harmonic standards.


2008 ◽  
Vol 82 (12) ◽  
pp. 5735-5749 ◽  
Author(s):  
Stephanie Oliere ◽  
Meztli Arguello ◽  
Thibault Mesplede ◽  
Vanessa Tumilasci ◽  
Peyman Nakhaei ◽  
...  

ABSTRACT Vesicular stomatitis virus (VSV) is a candidate oncolytic virus that replicates and induces cell death in cancer cells while sparing normal cells. Although defects in the interferon antiviral response facilitate VSV oncolysis, other host factors, including translational and growth regulatory mechanisms, also appear to influence oncolytic virus activity. We previously demonstrated that VSV infection induces apoptosis in proliferating CD4+ T lymphocytes from adult T-cell leukemia samples but not in resting T lymphocytes or primary chronic lymphocytic leukemia cells that remain arrested in G0. Activation of primary CD4+ T lymphocytes with anti-CD3/CD28 is sufficient to induce VSV replication and cell death in a manner dependent on activation of the MEK1/2, c-Jun NH2-terminal kinase, or phosphatidylinositol 3-kinase pathway but not p38. VSV replication is specifically impaired by the cell cycle inhibitor olomoucine or rapamycin, which induces early G1 arrest, but not by aphidicolin or Taxol, which blocks at the G11S or G21M phase, respectively; this result suggests a requirement for cell cycle entry for efficient VSV replication. The relationship between increased protein translation following G0/G1 transition and VSV permissiveness is highlighted by the absence of mTOR and/or eIF4E phosphorylation whenever VSV replication is impaired. Furthermore, VSV protein production in activated T cells is diminished by small interfering RNA-mediated eIF4E knockdown. These results demonstrate that VSV replication in primary T lymphocytes relies on cell cycle transition from the G0 phase to the G1 phase, which is characterized by a sharp increase in ribogenesis and protein synthesis.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Sébastien A. Felt ◽  
Gaith N. Droby ◽  
Valery Z. Grdzelishvili

ABSTRACT Vesicular stomatitis virus (VSV) is a promising oncolytic virus (OV). Although VSV is effective against a majority of pancreatic ductal adenocarcinoma cell (PDAC) cell lines, some PDAC cell lines are highly resistant to VSV, and the mechanisms of resistance are still unclear. JAK1/2 inhibitors (such as ruxolitinib and JAK inhibitor I) strongly stimulate VSV replication and oncolysis in all resistant cell lines but only partially improve the susceptibility of resistant PDACs to VSV. VSV tumor tropism is generally dependent on the permissiveness of malignant cells to viral replication rather than on receptor specificity, with several ubiquitously expressed cell surface molecules playing a role in VSV attachment to host cells. However, as VSV attachment to PDAC cells has never been tested before, here we examined if it was possibly inhibited in resistant PDAC cells. Our data show a dramatically weaker attachment of VSV to HPAF-II cells, the most resistant human PDAC cell line. Although sequence analysis of low-density lipoprotein (LDL) receptor (LDLR) mRNA did not reveal any amino acid substitutions in this cell line, HPAF-II cells displayed the lowest level of LDLR expression and dramatically lower LDL uptake. Treatment of cells with various statins strongly increased LDLR expression levels but did not improve VSV attachment or LDL uptake in HPAF-II cells. However, LDLR-independent attachment of VSV to HPAF-II cells was dramatically improved by treating cells with Polybrene or DEAE-dextran. Moreover, combining VSV with ruxolitinib and Polybrene or DEAE-dextran successfully broke the resistance of HPAF-II cells to VSV by simultaneously improving VSV attachment and replication. IMPORTANCE Oncolytic virus (OV) therapy is an anticancer approach that uses viruses that selectively infect and kill cancer cells. This study focuses on oncolytic vesicular stomatitis virus (VSV) against pancreatic ductal adenocarcinoma (PDAC) cells. Although VSV is effective against most PDAC cells, some are highly resistant to VSV, and the mechanisms are still unclear. Here we examined if VSV attachment to cells was inhibited in resistant PDAC cells. Our data show very inefficient attachment of VSV to the most resistant human PDAC cell line, HPAF-II. However, VSV attachment to HPAF-II cells was dramatically improved by treating cells with polycations. Moreover, combining VSV with polycations and ruxolitinib (which inhibits antiviral signaling) successfully broke the resistance of HPAF-II cells to VSV by simultaneously improving VSV attachment and replication. We envision that this novel triple-combination approach could be used in the future to treat PDAC tumors that are highly resistant to OV therapy.


2020 ◽  
Vol 193 ◽  
pp. 105404 ◽  
Author(s):  
Danilo Pelusi ◽  
Raffaele Mascella ◽  
Luca Tallini ◽  
Janmenjoy Nayak ◽  
Bighnaraj Naik ◽  
...  

2011 ◽  
Vol 19 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Candice Willmon ◽  
Rosa M Diaz ◽  
Phonphimon Wongthida ◽  
Feorillo Galivo ◽  
Timothy Kottke ◽  
...  

2014 ◽  
Vol 635-637 ◽  
pp. 1692-1695
Author(s):  
Zhi Long Liu

Some drawbacks of existing binary search algorithm has been improved to reduce the number of paging through improved reader in this paper to reduce the number of bytes for each tag and reader communication transmission, thereby reducing the improved algorithm of recognition time. At the same time, an improved binary anti-collision algorithm, and by Matlab simulation results show the advantages of the improved algorithm compared to other improved binary search algorithm.


Sign in / Sign up

Export Citation Format

Share Document