mechanisms of resistance
Recently Published Documents


TOTAL DOCUMENTS

1685
(FIVE YEARS 404)

H-INDEX

94
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Zhenyu Li ◽  
Tian Li ◽  
Meisui Liu ◽  
Tijana Ivanovic

Understanding mechanisms of resistance to antiviral inhibitors can reveal nuanced features of targeted viral mechanisms and, in turn, lead to improved strategies for inhibitor design. Arbidol is a broad-spectrum antiviral which binds to and prevents the fusion-associated conformational changes in the trimeric influenza hemagglutinin (HA). The rate-limiting step during HA-mediated membrane fusion is the release of the hydrophobic fusion peptides from a conserved pocket on HA. Here, we investigated how destabilizing or stabilizing mutations in or near the fusion peptide affect viral sensitivity to Arbidol. The degree of sensitivity was proportional to the extent of fusion peptide stability on the pre-fusion HA: stabilized mutants were more sensitive, and destabilized ones resistant to Arbidol. Single-virion membrane fusion experiments for representative Wild Type and mutant viruses demonstrated that resistance is a direct consequence of fusion-peptide destabilization not dependent on reduced Arbidol binding to HA at neutral pH. Our results support the model whereby the probability of individual HAs extending to engage the target membrane is determined by the composite of two critical forces: a "tug" on the fusion peptide by the extension of the central coiled-coil on HA, and the key interactions stabilizing fusion peptide in the pre-fusion pocket. Arbidol increases the free-energy penalty for coiled-coil extension, but destabilizing mutations decrease the free-energy cost for fusion peptide release, accounting for the observed resistance. Our findings have broad implications for fusion-inhibitor design, viral mechanisms of resistance, and our basic understanding of HA-mediated membrane fusion.


BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Sébastien Vachenc ◽  
Jessica Gobbo ◽  
Sarah El Moujarrebe ◽  
Isabelle Desmoulins ◽  
Marine Gilabert ◽  
...  

Abstract Background Nowadays, evaluation of the efficacy and the duration of treatment, in context of monitoring patients with solid tumors, is based on the RECIST methodology. With these criteria, resistance and/or insensitivity are defined as tumor non-response which does not allow a good understanding of the diversity of the underlying mechanisms. The main objective of the OncoSNIPE® collaborative clinical research program is to identify early and late markers of resistance to treatment. Methods Multicentric, interventional study with the primary objective to identify early and / or late markers of resistance to treatment, in 600 adult patients with locally advanced or metastatic triple negative or Luminal B breast cancer, non-small-cell lung cancer or pancreatic ductal adenocarcinoma. Patients targeted in this study have all rapid progression of their pathology, making it possible to obtain models for evaluating markers of early and / or late responses over the 2-year period of follow-up, and thus provide the information necessary to understand resistance mechanisms. To explore the phenomena of resistance, during therapeutic response and / or progression of the pathology, we will use a multidisciplinary approach including high-throughput sequencing (Exome-seq and RNAseq), clinical data, medical images and immunological profile by ELISA. Patients will have long-term follow-up with different biological samples, at baseline (blood and biopsy) and at each tumoral evaluation or tumoral progression evaluated by medical imaging. Clinical data will be collected through a dedicated Case Report Form (CRF) and enriched by semantic extraction based on the French ConSoRe (Continuum Soins Recherche) initiative, a dedicated Semantic Clinical Data Warehouse (SCDW) to cancer. The study is sponsored by Oncodesign (Dijon, France) and is currently ongoing. Discussion The great diversity of intrinsic or acquired molecular mechanisms involved in resistance to treatment constitutes a real therapeutic issue. Improving understanding of mechanisms of resistance of cancer cells to anti-tumor treatments is therefore a major challenge. The OncoSNIPE cohort will lead to a better understanding of the mechanisms of resistance and will allow to explore new mechanisms of actions and to discover new therapeutic targets or strategies making it possible to circumvent the escape in different types of cancer. Trial registration Clinicaltrial.gov. Registered 16 September 2020, https://clinicaltrials.gov/ct2/show/NCT04548960?term=oncosnipe&draw=2&rank=1 and ANSM ID RCB 2017-A02018-45.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 44
Author(s):  
Rosario Prados-Carvajal ◽  
Elsa Irving ◽  
Natalia Lukashchuk ◽  
Josep V. Forment

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are now a first-line maintenance treatment in ovarian cancer and have been approved in other cancer types, including breast, pancreatic and prostate. Despite their efficacy, and as is the case for other targeted therapies, resistance to PARPi has been reported clinically and is generating a growing patient population of unmet clinical need. Here, we discuss the mechanisms of resistance that have been described in pre-clinical models and focus on those that have been already identified in the clinic, highlighting the key challenges to fully characterise the clinical landscape of PARPi resistance and proposing ways of preventing and overcoming it.


Author(s):  
Yajing Song ◽  
Zhen Zhou ◽  
Jing Gu ◽  
Junmei Yang ◽  
Jiaoyu Deng

After being used extensively for decades, trimethoprim still remains one of the key accessible antimicrobials recommended by the World Health Organization. A better understanding of the mechanisms of resistance would be beneficial for the future utilization of this drug.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6280
Author(s):  
Eugenia Passaro ◽  
Chiara Papulino ◽  
Ugo Chianese ◽  
Antonella Toraldo ◽  
Raffaella Congi ◽  
...  

Autophagy is an essential intracellular catabolic mechanism involved in the degradation and recycling of damaged organelles regulating cellular homeostasis and energy metabolism. Its activation enhances cellular tolerance to various stresses and is known to be involved in drug resistance. In cancer, autophagy has a dual role in either promoting or blocking tumorigenesis, and recent studies indicate that epigenetic regulation is involved in its mechanism of action in this context. Specifically, the ubiquitin-binding histone deacetylase (HDAC) enzyme HDAC6 is known to be an important player in modulating autophagy. Epigenetic modulators, such as HDAC inhibitors, mediate this process in different ways and are already undergoing clinical trials. In this review, we describe current knowledge on the role of epigenetic modifications, particularly HDAC-mediated modifications, in controlling autophagy in cancer. We focus on the controversy surrounding their ability to promote or block tumor progression and explore the impact of HDAC6 inhibitors on autophagy modulation in cancer. In light of the fact that targeted drug therapy for cancer patients is attracting ever increasing interest within the research community and in society at large, we discuss the possibility of using HDAC6 inhibitors as adjuvants and/or in combination with conventional treatments to overcome autophagy-related mechanisms of resistance.


Author(s):  
Sarah E. Murphy ◽  
Tihana Bicanic

Candida species are the leading cause of invasive fungal infections worldwide and are associated with acute mortality rates of ~50%. Mortality rates are further augmented in the context of host immunosuppression and infection with drug-resistant Candida species. In this review, we outline antifungal drugs already in clinical use for invasive candidiasis and candidaemia, their targets and mechanisms of resistance in clinically relevant Candida species, encompassing not only classical resistance, but also heteroresistance and tolerance. We describe novel antifungal agents and targets in pre-clinical and clinical development, including their spectrum of activity, antifungal target, clinical trial data and potential in treatment of drug-resistant Candida. Lastly, we discuss the use of combination therapy between conventional and repurposed agents as a potential strategy to combat the threat of emerging resistance in Candida.


2021 ◽  
Author(s):  
Ester Amorim ◽  
Marton Kaique Andrade Cavalcante ◽  
Ailton Alvaro Silva ◽  
Vanessa Lucília Silveira Medeiros ◽  
Maria Edileuza Felinto Brito ◽  
...  

Abstract Cutaneous leishmaniasis is an infectious disease that presents an immune response marked by the activation of lymphocytes and production of cytokines, including those of the IL-1 family, which act as an important trigger for the activation of an effector immune response. Despite this, inflammation exacerbation is sometimes also attributed to IL-1 cytokines, although some others down-regulate inflammation or produce Th2 responses, which need to be further clarified in the CL. Assessing the gene and protein expression of IL-1 cytokines associated with different immune response profiles in PBMCs from patients with active and healed lesions, this study demonstrated that stimulation by L. braziliensis positively regulates inflammatory and anti-inflammatory IL-1 cytokines, as IL-1α/β and IL-37, while there was a marked inhibition of IL-1Ra and IL-18 genes in patients treated with antimony, which perhaps contributes to the mechanisms of resistance that control Leishmania infection.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Niamh Coleman ◽  
Vivek Subbiah ◽  
Shubham Pant ◽  
Keyur Patel ◽  
Sinchita Roy-Chowdhuri ◽  
...  

AbstractAcquired resistance to molecular targeted therapy is a significant challenge of the precision medicine era. The ability to understand these mechanisms of resistance may improve patient selection and allow for the development of rationally designed next-line or combination treatment strategies and improved patient outcomes. AKT is a critical effector of the phosphoinositide 3-kinase signaling cascade, one of the most commonly activated pathways in human cancer. Deregulation of signaling pathways, such as RAF/MEK/ERK are previously described mechanisms of resistance to AKT/PI3K inhibitors. Mutations in the mTOR gene, however, are exceedingly rare. We present a case of acquired mTOR resistance, following targeted AKT inhibition, and subsequent response to mTOR1/2 inhibitor in a patient with metastatic endometrial cancer, the first documented response to ATP-competitive mTOR inhibition in this setting. This case supports mTOR mutation as a mechanism of resistance, and underscores the importance of tumor molecular profiling, exemplifying precision medicine in action.


Sign in / Sign up

Export Citation Format

Share Document