scholarly journals Making use of our data

Author(s):  
Graham Pullan

Engineers are acquiring data at an ever-increasing rate: data from computational design studies; measurements data from manufacturing processes, development tests, and products in service; contemporary data and legacy data. In this paper, two recommendations are made to allow engineers to make better use of these expanding databases. First, we should build on the hierarchical nature of our data; we can navigate and filter the database using high level descriptors such as design specifications and performance metrics, and then request comparative plots of detailed data such as line, contour and surface plots. Second, we can speed up the rate at which we learn from data by making the visualisations dynamic; in so doing, we enable virtual experiments to be performed that highlight connections between input parameters, output metrics and physical mechanisms. The embodiment of these two principles in the open source project, dbslice, is described. Three example applications (an aerodynamic design study for a compressor stator; the application of machine learning to aid navigation of large databases; and visualisation of a database of snapshots from an unsteady simulation) are presented. In each case, the hierarchical data and dynamic visualisations allow the user to explore the database and experience the connections and patterns within it. By Making Use of Our Data to interactively navigate existing and new design spaces in this way, engineers can accelerate their response to the challenges of future products.

Author(s):  
Vladimir Alexandrovich Frolov ◽  
Vadim Sanzharov ◽  
Vladimir Alexandrovich Galaktionov ◽  
Alexandr Scherbakov

We propose a novel high-level approach for software development on GPU using Vulkan API. Our goal is to speed-up development and performance studies for complex algorithms on GPU, which is quite difficult and laborious for Vulkan due to large number of HW features low level details. The proposed approach uses auto programming to translate ordinary C++ to optimized Vulkan implementation with automatic shaders generation, resource binding and fine-grained barriers placement. Our model is not general-purpose programming, but is extendible and customer-focused. For a single C++ input our tool can generate multiple different implementations of algorithm in Vulkan for different cases or types of hardware. For example, we automatically detect reduction in C++ source code and then generate several variants of parallel reduction on GPU: with optimization for different warp size, with or without atomics, using or not subgroup operations. Another example is GPU ray tracing applications for which we can generate different variants: pure software implementation in compute shader, using hardware accelerated ray queries, using full RTX pipeline. The goal of our work is to increase productivity of developers who are forced to use Vulkan due to various required hardware features in their software but still do care about cross-platform ability of the developed software and want to debug their algorithm logic on the CPU. Therefore, we assume that the user will take generated code and integrate it with hand-written Vulkan code.


2020 ◽  
Vol 12 (2) ◽  
pp. 19-50 ◽  
Author(s):  
Muhammad Siddique ◽  
Shandana Shoaib ◽  
Zahoor Jan

A key aspect of work processes in service sector firms is the interconnection between tasks and performance. Relational coordination can play an important role in addressing the issues of coordinating organizational activities due to high level of interdependence complexity in service sector firms. Research has primarily supported the aspect that well devised high performance work systems (HPWS) can intensify organizational performance. There is a growing debate, however, with regard to understanding the “mechanism” linking HPWS and performance outcomes. Using relational coordination theory, this study examines a model that examine the effects of subsets of HPWS, such as motivation, skills and opportunity enhancing HR practices on relational coordination among employees working in reciprocal interdependent job settings. Data were gathered from multiple sources including managers and employees at individual, functional and unit levels to know their understanding in relation to HPWS and relational coordination (RC) in 218 bank branches in Pakistan. Data analysis via structural equation modelling, results suggest that HPWS predicted RC among officers at the unit level. The findings of the study have contributions to both, theory and practice.


Author(s):  
Richard Stone ◽  
Minglu Wang ◽  
Thomas Schnieders ◽  
Esraa Abdelall

Human-robotic interaction system are increasingly becoming integrated into industrial, commercial and emergency service agencies. It is critical that human operators understand and trust automation when these systems support and even make important decisions. The following study focused on human-in-loop telerobotic system performing a reconnaissance operation. Twenty-four subjects were divided into groups based on level of automation (Low-Level Automation (LLA), and High-Level Automation (HLA)). Results indicated a significant difference between low and high word level of control in hit rate when permanent error occurred. In the LLA group, the type of error had a significant effect on the hit rate. In general, the high level of automation was better than the low level of automation, especially if it was more reliable, suggesting that subjects in the HLA group could rely on the automatic implementation to perform the task more effectively and more accurately.


Author(s):  
Mark O Sullivan ◽  
Carl T Woods ◽  
James Vaughan ◽  
Keith Davids

As it is appreciated that learning is a non-linear process – implying that coaching methodologies in sport should be accommodative – it is reasonable to suggest that player development pathways should also account for this non-linearity. A constraints-led approach (CLA), predicated on the theory of ecological dynamics, has been suggested as a viable framework for capturing the non-linearity of learning, development and performance in sport. The CLA articulates how skills emerge through the interaction of different constraints (task-environment-performer). However, despite its well-established theoretical roots, there are challenges to implementing it in practice. Accordingly, to help practitioners navigate such challenges, this paper proposes a user-friendly framework that demonstrates the benefits of a CLA. Specifically, to conceptualize the non-linear and individualized nature of learning, and how it can inform player development, we apply Adolph’s notion of learning IN development to explain the fundamental ideas of a CLA. We then exemplify a learning IN development framework, based on a CLA, brought to life in a high-level youth football organization. We contend that this framework can provide a novel approach for presenting the key ideas of a CLA and its powerful pedagogic concepts to practitioners at all levels, informing coach education programs, player development frameworks and learning environment designs in sport.


Nature Energy ◽  
2021 ◽  
Author(s):  
Yanxin Yao ◽  
Jiafeng Lei ◽  
Yang Shi ◽  
Fei Ai ◽  
Yi-Chun Lu

1995 ◽  
Vol 412 ◽  
Author(s):  
A. V. Wolfsberg ◽  
B. A. Robinson ◽  
J. T. Fabryka-Martin

AbstractCharacterization and performance assessment (PA) studies for the potential high-level nuclear waste repository at Yucca Mountain require an understanding of migration mechanisms and pathways of radioactive solutes. Measurements of 36C1 in samples extracted from boreholes at the site are being used in conjunction with recent infiltration estimates to calibrate a site-scale flow and solute transport model. This exercise using the flow and solute transport model, FEHM, involves testing different model formulations and two different hypotheses to explain the occurrence of elevated 36Cl in the Calico Hills unit (CHn) which indicates younger water than in the overlying Topopah Spring unit (TSw). One hypothesis suggests fast vertical transport from the surface via fractures in the TSw to the CHn. An alternative hypothesis is that the elevated 36C1 concentrations reflect rapid horizontal flow in the CHn or at the interface between the CHn and the TSw with the source being vertical percolation under spatially isolated regions of high infiltration or at outcrops of those units. Arguments in favor of and against the hypotheses are described in conjunction with the site-scale transport studies.


Sign in / Sign up

Export Citation Format

Share Document