scholarly journals Comparison of Chest Compression Quality Using Wing Boards versus Walking Next to a Moving Stretcher: A Randomized Crossover Simulation Study

2020 ◽  
Vol 9 (5) ◽  
pp. 1584
Author(s):  
Yukako Nakashima ◽  
Takeji Saitoh ◽  
Hideki Yasui ◽  
Masahide Ueno ◽  
Kensuke Hotta ◽  
...  

Background: When a rescuer walks alongside a stretcher and compresses the patient’s chest, the rescuer produces low-quality chest compressions. We hypothesized that a stretcher equipped with wing boards allows for better chest compressions than the conventional method. Methods: In this prospective, randomized, crossover study, we enrolled 45 medical workers and students. They performed hands-on chest compressions to a mannequin on a moving stretcher, while either walking (the walk method) or riding on wings attached to the stretcher (the wing method). The depths of the chest compressions were recorded. The participants’ vital signs were measured before and after the trials. Results: The average compression depth during the wing method (5.40 ± 0.50 cm) was greater than during the walk method (4.85 ± 0.80 cm; p < 0.01). The average compression rates during the two minutes were 215 ± 8 and 217 ± 5 compressions in the walk and wing methods, respectively (p = ns). Changes in blood pressure (14 ± 11 vs. 22 ± 14 mmHg), heart rate (32 ± 13 vs. 58 ± 20 bpm), and modified Borg scale (4 (interquartile range: 2–4) vs. 6 (5–7)) were significantly lower in the wing method cohort compared to the walking cohort (p < 0.01). The rescuer’s size and physique were positively correlated with the chest compression depth during the walk method; however, we found no significant correlation in the wing method. Conclusions: Chest compressions performed on the stretcher while moving using the wing method can produce high-quality chest compressions, especially for rescuers with a smaller size and physique.

2018 ◽  
Vol 26 (2) ◽  
pp. 106-110 ◽  
Author(s):  
Yoshiaki Takahashi ◽  
Takeji Saitoh ◽  
Misaki Okada ◽  
Hiroshi Satoh ◽  
Toshiya Akai ◽  
...  

Background: Conventional hands-on chest compression, in cardiopulmonary resuscitation, is often inadequate, especially when the rescuers are weak or have a small physique. Objectives: This study aimed to investigate the potential of leg-foot chest compression, with and without a footstool, during cardiopulmonary resuscitation. Methods and Results: We prospectively enrolled 21 medical workers competent in basic life support. They performed cardiopulmonary resuscitation on a manikin for 2 min using conventional hands-on compression (HO), leg-foot compression (LF), and leg-foot compression with a footstool (LF + FS). We analyzed the compression depths, changes in the rescuers’ vital signs, and the modified Borg scale scores after the trials. The compression depth did not differ between the cases using HO and LF. In the case of LF + FS, compression depths ⩾5 cm were more frequently observed (median, inter-quartile range: 93%, 81%–100%) than in HO (9%, 0%–57%, p < 0.01) and LF (28%, 11%–47%, p < 0.01). The increase in the heart rate or modified Borg scale scores, after the trials, did not differ between the HO and LF group; however, the values were the lowest in the case of LF + FS (49 ± 18 beats/min and 5 (4–7) in HO, 46 ± 18 and 6 (5–7) in LF, and 32 ± 11 and 2 (1–3) in LF + FS, respectively, p < 0.01). However, the increase in blood pressure, SpO2, and respiratory rate were not different among each group. The increases in the heart rate and modified Borg scale scores negatively were correlated with the rescuers’ body size, in the case of HO and LF, but not LF + FS. Conclusion: LF can be used as an alternative to HO, when adequate HO is difficult. LF + FS could be used when rescuers are weak or have a small physique and when the victims are bigger than the rescuers.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jakob E Thomsen ◽  
Martin Harpsø ◽  
Graham W Petley ◽  
Svend Vittinghus ◽  
Charles D Deakin ◽  
...  

Introduction: We have recently shown that Class 1 electrical insulating gloves are safe for hands-on defibrillation. Continuous chest compressions during defibrillation reduce the peri-shock pauses and increase the subsequent chance of successful defibrillation. In this study we have investigated the effect of these electrical insulation gloves on the quality of chest compressions, compared with normal clinical examination gloves. Methods: Emergency medical technicians trained in 2010 resuscitation guidelines delivered uninterrupted chest compressions for 6 min on a manikin, whilst wearing Class 1 electrical insulating gloves or clinical examination gloves. The order of gloves was randomized and each session of chest compressions was separated by at least 30 min to avoid fatigue. Data were collected from the manikin. Compression depth and compression rate were compared. Results: Data from 35 participants are shown in Figure 1. There was no statistically significant difference between Class 1 electrical insulating gloves in chest compression depth (median±range: 45 (28-61) vs 43 (28-61) p=0.69) and chest compression rate (113 (67-150) vs 113(72-145), p=0.87) when compared to clinical examination cloves. Conclusion: These preliminary data suggest that the use of Class 1 electrical insulation gloves does not reduce the quality of chest compressions during simulated CPR compared to clinical examination gloves.


Author(s):  
Andrew J. Lautz ◽  
Ryan W. Morgan ◽  
Vinay M. Nadkarni

High-quality cardiopulmonary resuscitation (CPR) with targeted post-arrest management have resulted in dramatic improvements in survival with favourable neurological outcome from in-hospital paediatric cardiac arrest over the past two decades. High-quality CPR focuses on five key components: (1) chest compression depth of at least one-third of the anterior–posterior chest diameter; (2) chest compression rate between 100 and 120 compressions per minute; (3) limitation of interruptions in chest compressions; (4) full chest recoil between compressions; and (5) avoidance of overventilation. Quantitative capnography with a target end-tidal CO2 of at least 20 mmHg and invasive arterial blood pressure monitoring targeting a diastolic blood pressure of at least 25 mmHg in infants and 30 mmHg in children during chest compressions are promising markers of effective CPR. Post-arrest management should target normoxia, normocarbia, normotension for age, and normoglycaemia with active targeted temperature management to prevent hyperthermia and surveillance for and aggressive treatment of seizures.


Biosensors ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 35
Author(s):  
Seungjae Lee ◽  
Yeongtak Song ◽  
Jongshill Lee ◽  
Jaehoon Oh ◽  
Tae Ho Lim ◽  
...  

Recently, a smart-device-based chest compression depth (CCD) feedback system that helps ensure that chest compressions have adequate depth during cardiopulmonary resuscitation (CPR) was developed. However, no CCD feedback device has been developed for infants, and many feedback systems are inconvenient to use. In this paper, we report the development of a smart-ring-based CCD feedback device for CPR based on an inertial measurement unit, and propose a high-quality chest compression depth estimation algorithm that considers the orientation of the device. The performance of the proposed feedback system was evaluated by comparing it with a linear variable differential transformer in three CPR situations. The experimental results showed compression depth errors of 2.0 ± 1.1, 2.2 ± 0.9, and 1.4 ± 1.1 mm in the three situations. In addition, we conducted a pilot test with an adult/infant mannequin. The results of the experiments show that the proposed smart-ring-based CCD feedback system is applicable to various chest compression methods based on real CPR situations.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Simone Ordelman ◽  
Paul Aelen ◽  
Paul van Berkom ◽  
Gerrit J Noordergraaf

Introduction: Compression-induced ventilation may aid gas exchange during CPR. We hypothesized that the amount of gas moving in and out of the lungs depends on chest compression depth. Methods: VF was induced in five female, anesthetized and intubated pigs of about 30 kg. After 30 seconds of non-intervention time, chest compressions were started and maintained at a rate of 100 compressions per minute. Every two minutes chest compression depth was altered, resulting in 14 minutes of CPR with a depth sequence of 4 cm, 3 cm, 4 cm, 5 cm, 5.5 cm, 5 cm and 4 cm. Ventilations were performed manually with a bag-valve device 10 times per minute during continuous chest compressions by a dedicated expert. Airway flow was measured at the end of the endotracheal tube. Compression-induced ventilation was determined from the periods between the manual ventilations. The average compression-induced minute ventilation volume was determined over the last minute of each two minute period of CPR at each specific chest compression depth. Results: The compression-induced ventilation volume in the first period of CPR at 4 cm of depth was 1.6 ± 0.9 L/min (about 4% of total ventilation volume). The figure shows how the compression-induced ventilation volume decreases with increasing chest compression depth, relative to this initial value. CPR with a chest compression depth of 4 cm was performed three times in each pig, and the corresponding compression-induced ventilation volumes decreased with time. This suggested that there might be just a time effect (e.g. atelectasis). However, the final compression depth of 4 cm resulted in larger compression-induced ventilation volumes than the preceding 5 cm and 5.5 cm compression depths, indicating that the decreased volume over time could not purely be a time effect, but must also be an effect of the depth. Conclusion: In conclusion, compression-induced ventilation volume appears to decrease with deeper chest compressions as well as with prolonged CPR.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Benjamin S Abella ◽  
Salem Kim ◽  
Alexandra Colombus ◽  
Cheryl L Shea ◽  
Lance B Becker

Background: Recent investigations have demonstrated that CPR performance among trained providers can be improved by audiovisual prompting and real-time feedback, and higher quality CPR before defibrillation can improve shock success and has the potential to improve patient outcomes. Objective: We hypothesized that simplified voice prompts incorporated into an automatic external defibrillator (AED) can lead to improvements in CPR performance by untrained lay rescuers. Methods: Adult volunteers with no prior CPR training were assessed in their use of an AED with chest compression voice instructions and metronome prompts on a CPR-recording manikin. Volunteers were given minimal instructions regarding use of the device and were given no instructions regarding CPR performance. The AED was designed to prompt five cycles of 30 chest compressions between defibrillatory attempts. Chest compression rates and depths were measured via review of videotape and manikin recording data, respectively. Results: A total of 60 adults were assessed in their use of the AED, with a mean age of 33.6±12.8; 36/63 (57%) were female. Mean chest compression rate was 103±12 and mean depth was 37±14 mm. Furthermore, minimal decay in chest compression rates occurred over 5 cycles of chest compressions, with mean rate of 101±19 during the first cycle and 104±10 during the 5 th cycle. No volunteers were unable to use the AED or complete 5 cycles of chest compressions. Conclusions: Our work demonstrates that with appropriate real-time prompts delivered even in the absence of training or human coaching, laypersons can perform CPR that has a quality often similar to trained providers. This finding has important implications for AED design especially in light of the renewed importance of both CPR and the interaction of quality chest compressions and defibrillatory success.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Nutthapong Pechaksorn ◽  
Veerapong Vattanavanit

Background. The current basic life support guidelines recommend two-minute shifts for providing chest compressions when two rescuers are performing cardiopulmonary resuscitation. However, various studies have found that rescuer fatigue can occur within one minute, coupled with a decay in the quality of chest compressions. Our aim was to compare chest compression quality metrics and rescuer fatigue between alternating rescuers in performing one- and two-minute chest compressions. Methods. This prospective randomized cross-over study was conducted at Songklanagarind Hospital, Hat Yai, Songkhla, Thailand. We enrolled sixth-year medical students and residents and randomly grouped them into pairs to perform 8 minutes of chest compression, utilizing both the one-minute and two-minute scenarios on a manikin. The primary end points were chest compression depth and rate. The secondary end points included rescuers’ fatigue, respiratory rate, and heart rate. Results. One hundred four participants were recruited. Compared with participants in the two-minute group, participants in the one-minute group had significantly higher mean (standard deviation, SD) compression depth (mm) (45.8 (7.2) vs. 44.5 (7.1), P=0.01) but there was no difference in the mean (SD) rate (compressions per min) (116.1 (12.5) vs. 117.8 (12.4), P=0.08), respectively. The rescuers in the one-minute group had significantly less fatigue (P<0.001) and change in respiratory rate (P<0.001), but there was no difference in the change of heart rate (P=0.59) between the two groups. Conclusion. There were a significantly higher compression depth and lower rescuer fatigue in the 1-minute chest compression group compared with the 2-minute group. This trial is registered with TCTR20170823001.


2019 ◽  
Vol 4 (1) ◽  
pp. 625-628
Author(s):  
Nisha Ghimire ◽  
Renu Yadav ◽  
Soumitra Mukhopadhyay

Introduction: Studies have shown different views regarding the effect of music in vitals e.g Heart rate (HR), Blood pressure (BP) and atiention. The effect of preferred music with lyrics in vitals and reaction time in stroop test has not been performed in Nepalese students so, we conducted the study. Objective: To find out the change in HR, BP and reaction time in Stroop test before and after their preferred music with lyrics. Methodology Thirty male medical and paramedical students aged 25.27 ± 2.0 participated in study. The vital signs and reaction time in Stroop test before and after music was taken. Results Paired-t test was used to compare means before and after exposure to music. The means are expressed as Mean ± SD. Heart rate (HR) increased after exposure to music (66.33±9.51 Vs 67.2±8.44) (p<.05). The error in Stroop test was less after music (.66±.49 Vs.63±.66) (p<.05). The reaction time after error correction decreased post exposure to music (24.117±4.61Vs23.29±4.45) (p<.05). Conclusion The heart rate increased after exposure to music. The errors decreased after listening to music which also decreased reaction time.


CJEM ◽  
2015 ◽  
Vol 18 (4) ◽  
pp. 270-275 ◽  
Author(s):  
Shannon M. Fernando ◽  
Sheldon Cheskes ◽  
Daniel Howes

AbstractBackgroundReducing pauses during cardiopulmonary resuscitation (CPR) compressions result in better outcomes in cardiac arrest. Artefact filtering technology (AFT) gives rescuers the opportunity to visualize the underlying electrocardiogram (ECG) rhythm during chest compressions, and reduces the pauses that occur before and after delivering a shock. We conducted a simulation study to measure the reduction of peri-shock pause and impact on chest compression fraction (CCF) through AFT.MethodsIn a simulator setting, participants were given a standardized cardiac arrest scenario and were randomly assigned to perform CPR/defibrillation using the protocol from one of three experimental arms: 1) Standard of Care (pauses for rhythm analysis and shock delivery); 2) AFT (no pauses for rhythm analysis, but a pause for defibrillation); or 3) AFT with hands-on defibrillation (no pauses for rhythm analysis or defibrillation). The primary outcomes were CCF and peri-shock pause duration, with secondary outcomes of pre- and post-shock pause duration.ResultsAFT with hands-on defibrillation was found to have the highest CCF (86.4%), as compared to AFT alone (83.8%, p<0.001), and both groups significantly improved CCF in comparison with the Standard of Care (76.7%, p<0.001). AFT with hands-on defibrillation was associated with a reduced peri-shock pause (2.6 seconds) as compared to AFT alone (5.3 seconds, p<0.001), and the Standard of Care (7.4 seconds, p<0.001).ConclusionsIn this cardiac arrest model, AFT results in a greater CCF by reducing peri-shock pause duration. There is also a small but detectable improvement in CCF with the addition of hands-on defibrillation.


1982 ◽  
Vol 60 (10) ◽  
pp. 1241-1246 ◽  
Author(s):  
T. Trippenbach ◽  
C. Gaultier ◽  
L. Cooper

Effects of chest compressions on the pattern of breathing were studied in pentobarbital anaesthetized 9- to 11-day-old kittens before and after vagotomy. The chest was compressed by means of a micrometer at three levels (T1–4, T6–8, T9–11). In intact and vagotomized kittens, the group mean values of inspiratory time (tI), expiratory (tE) time, peak amplitude of the integrated phrenic activity (PHR) and its rate of rise (PHR/tI) during compressions were not different from those of the control breaths. On the other hand, in intact kittens during chest compressions variability of all the measured variables significantly increased. In the vagotomized kittens, variability of parameters other than inspiratory time was unaffected. Nevertheless we cannot exclude contribution of extravagal receptors in control of tE. The tE effects could be masked by the increased variability of the control value in vagotomized kittens. The effects of chest compression on the integrated phrenic activity were mostly dependent on the intact vagal feedback.


Sign in / Sign up

Export Citation Format

Share Document