scholarly journals Use of Essential Oils for the Control of Anthracnose Disease Caused by Colletotrichum acutatum on Post-Harvest Mangoes of Cat Hoa Loc Variety

Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 719
Author(s):  
Luu Thai Danh ◽  
Bui Thi Giao ◽  
Chau Trung Duong ◽  
Nguyen Thi Thu Nga ◽  
Doan Thi Kieu Tien ◽  
...  

Anthracnose disease caused by Colletotrichum spp. makes heavy losses for post-harvest mangoes of Cat Hoa Loc variety during storage, packaging, and transportation. The synthetic fungicides are commonly used to control the disease, but they are not safe for consumers’ health and environment. This study was aimed to investigate the use of essential oils (EOs) as the safe alternative control. Pathogen was isolated from the infected Cat Hoa Loc mangoes and identified by morphology and DNA sequencing of the ITS region. Six EOs (cinnamon, basil, lemongrass, peppermint, coriander, and orange) were chemically analyzed by GC–MS. The antifungal activity of EOs was studied in vitro and in vivo. The results showed that the isolated pathogen was Colletotrichum acutatum. Cinnamon, basil, and lemongrass EOs effectively inhibited the growth of C. acutatum in descending order of cinnamon, basil, and lemongrass. However, they (except basil oil) severely damaged fruit peels. The antifungal activity was closely related to the main compounds of EOs. Basil EOs effectively controlled anthracnose development on Cat Hoa Loc mangoes artificially infected with C. acutatum, and its effectiveness was comparable to that of fungicide treatment. Consequently, basil EOs can be used as a biocide to control anthracnose on post-harvest Cat Hoa Loc mangoes.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11242
Author(s):  
Sarunpron Khruengsai ◽  
Patcharee Pripdeevech ◽  
Chutima Tanapichatsakul ◽  
Chanin Srisuwannapa ◽  
Priya Esilda D’Souza ◽  
...  

Fungal endophytes are microorganisms living symbiotically with a host plant. They can produce volatile organic compounds (VOCs) that have antimicrobial activity. This study aimed to isolate endophytic fungi from Barleria prionitis plants grown in Thailand and to investigate the antifungal properties of their VOCs against Colletotrichum acutatum, a causal agent of anthracnose disease on post-harvest strawberry fruits. A total of 34 endophytic fungi were isolated from leaves of B. prionitis. The VOCs produced from each individual isolate were screened for their antifungal activity against C. acutatum using a dual-culture plate method. From this in vitro screening experiment, the VOCs produced by the endophytic isolate BP11 were found to have the highest inhibition percentage (80.3%) against the mycelial growth of C. acutatum. The endophytic isolate BP11 was molecularly identified as Daldinia eschscholtzii MFLUCC 19-0493. This strain was then selected for an in vivo experiment. Results from the in vivo experiment indicated that the VOCs produced by D. eschscholtzii MFLUCC 19-0493 were able to inhibit infections by C. acutatum on organic fresh strawberry fruits with an average inhibition percentage of 72.4%. The quality of the pathogen-inoculated strawberry fruits treated with VOCs produced by D. eschscholtzii MFLUCC 19-0493 was evaluated. Their fruit firmness, total soluble solids, and pH were found to be similar to the untreated strawberry fruits. Solid phase microextraction-gas chromatographic-mass spectrometric analysis of the VOCs produced by D. eschscholtzii MFLUCC 19-0493 led to the detection and identification of 60 compounds. The major compounds were elemicin (23.8%), benzaldehyde dimethyl acetal (8.5%), ethyl sorbate (6.8%), methyl geranate (6.5%), trans-sabinene hydrate (5.4%), and 3,5-dimethyl-4-heptanone (5.1%). Each major compound was tested for its antifungal activity against C. acutatum using the in vitro assay. While all these selected VOCs showed varying degrees of antifungal activity, elemicin was found to possess the strongest antifungal activity. This work suggests that D. eschscholtzii MFLUCC 19-0493 could be a promising natural preservative for controlling C. acutatum associated anthracnose disease in strawberry fruits during the post-harvest period.


2020 ◽  
pp. 1379-1384
Author(s):  
Alex Rodrigues Silva Caetano ◽  
Sara Maria Chalfoun ◽  
Mario Lúcio Vilela Resende ◽  
Caroline Lima Angélico ◽  
Wilder Douglas Santiago ◽  
...  

Essential oils, also known as volatile oils, are substances produced through the secondary metabolism of plants. In this study, we determined the chemical composition and the in vitro and in vivo antifungal activity of the essential oils from four species of Eucalyptus, Eucalyptus citriodora, Eucalyptus camaldulensis, Eucalyptus grandis and Eucalyptus microcorys, against the Hemileia vastatrix fungus. The essential oils from these four species of Eucalyptus were extracted from their leaves by the hydrodistillation technique using a modified Clevenger apparatus. The chemical characterization was performed by gas chromatography coupled with a mass spectrometer detector and by gas chromatography using a flame ionization detector. The antifungal activities of the essential oils against H. vastatrix were studied by evaluating the percentage of spore germination using the microdilution test for in vitro assays. The curative and preventive effects were evaluated in in vivo tests. The principal constituents of the essential oil from E. citriodora were citronellal, citronellol and isopulegol, while E. camaldulensis produced 1,8-cineole, α-terpineol and α-pinene. 1,8-cineole, α-pinene and α-terpineol were obtained from E. grandis and 1,8-cineole, α-pinene and trans-pinocarveol were the principal components in the essential oil of E. microcorys. In vitro and in vivo antifungal activities against the fungus under study were observed for most of the essential oils, except the essential oil from E. microcorys, for which no preventive antifungal activity was observed. Only the curing of infection by the H. vastatrix fungus was observed with this oil.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Laila Muñoz Castellanos ◽  
Nubia Amaya Olivas ◽  
Juan Ayala-Soto ◽  
Carmen Miriam De La O Contreras ◽  
Miriam Zermeño Ortega ◽  
...  

In this study, hydrodistillation was used to obtain essential oils (EOs) from pepper (Piper nigrum L.) and clove (Eugenia caryophyllata) and co-hydrodistillation (addition of fatty acid ethyl esters as extraction co-solvents) was used to obtain functional extracts (FEs). Antifungal activity of EOs and FEs was evaluated by determination of minimum inhibitory concentration (MIC) against Fusarium oxysporum and Aspergillus niger. The results showed that pepper (Piper nigrum) and clove (Eugenia caryophyllata) essential oils and their functional extracts are effective in vitro at concentrations from 400 to 500 ppm after 10 days of culturing. The essential oils and functional extracts were used on tomato fruit samples at three different concentrations: 350, 400, and 450 ppm5. Clove essential oil reduced the growth of Aspergillus niger from 50% to 70% and Fusarium oxysporum to 40%. The functional extracts (FEs) of clove and pepper, mixed with ethyl decanoate (FEs-C10), were the best combination for protecting the tomato fruit in vivo against both phytopathogenic fungi. Gas chromatography-mass spectrometry (GC-MS) was used to identify eugenol as the principal compound in clove oil and limonene, sabinene, and β-caryophyllene in pepper oil.


2019 ◽  
Vol 15 (1) ◽  
pp. 36
Author(s):  
Nur Alfi Saryanah ◽  
Suryo Wiyono ◽  
Dadang Dadang

Activity of Fungal Endophyte Secondary Metabolites against Colletotrichum acutatum on Chili PepperColletotrichum acutatum is one of anthracnose causal agents on chili pepper that has been reported to be predominant species in a some regions of Java Island. Secondary metabolites of endophytic fungi have been reported to have a potency as antifungal agents against plant pathogen. However, its antifungal activity against C. acutatum has not been reported yet. This study was aimed to evaluate the antifungal activity of fungal endophyte secondary metabolite against C. acutatum at in vitro and in vivo assay. In vitro assay was conducted to evaluate antifungal activity of fungal endophyte CBR1D14 isolate culture filtrate (FCBR) and mycelia extract (MCBR) in inhibiting conidial germination of C. acutatum. The results of in vitro assay showed that ethyl acetate extract of FCBR (EA FCBR) had the highest activity in inhibiting C. acutatum conidial germination. Methanol fraction from the partition of EA FCBR (FM FCBR) and from the partition of MCBR ethyl acetate extract (FM MCBR) showed the ability in inhibiting C. acutatum conidial germination. In vivo assay to chili pepper fruit showed that the treatment of FM FCBR (IC95 609.9 µg mL-1) and FM MCBR (IC95 1178.27 µg mL-1) decreased anthracnose disease incidence and lesion diameter. The efficacy rate of FM FCBR and FM MCBR treatments against anthracnose was 36.72 and 48.68%, respectively. Bioautography test was done on silica gel thin layer chromatogram. Methanol fraction of FCBR and MCBR were separated into 3 bioautographic spots respectively (Rf 0.04, 0.07, 0.7 for FM FCBR and Rf 0.06, 0.52, 0.7 for FM MCBR).


2019 ◽  
Vol 15 (7) ◽  
pp. 662-671 ◽  
Author(s):  
Nabila A. Sebaa ◽  
Amina T. Zatla ◽  
Mohammed E.A. Dib ◽  
Boufeldja Tabti ◽  
Jean Costa ◽  
...  

Background: Bellota species are used to treat various diseases in traditional folk medicine. Objectives: This study aimed to chemically characterize the essential oils and the hydrosol extract and regional specificity of the major components of Ballota nigra essential oil and to evaluate their in vitro and in vivo antifungal activities. Methods: Essential oils were obtained by a Clevenger-type apparatus and analyzed by using Gas Chromatography (GC) and Gas Chromatography Mass Spectroscopy (GC/MS). The antifungal activities were tested to three phytopathogenic stains (Penicillium expansum, Aspergillus niger and Alternaria alternata). Results: Altogether, 38 compounds were identified in the essential oils, representing 92.1-96.8% of the total oil composition. Their main constituents were E-β-caryophyllene (4.8-24.6%), E-β-farnesene (3.3-22.9%), β-bisabolene (7.6-30.2%), α-humulene (2.1-13.3%) and geranyl linalool (1.1-8.2%). The statistical methods deployed confirmed that there is a relation between the essential oil compositions and the harvest locations. Hydrosol extract was constituted by seven components, represented principally by methyl eugenol (75.2%) and caryophyllene oxide (12.5%). The results of in vitro antifungal activity with essential oil and hydrosol extract have shown very interesting antifungal activities on Penicillium expansum and Alternaria alternata strains with percentage reductions up to 80%. Additionally, in in vivo assays, Ballota nigra essential oil and hydrosol extract significantly reduce decay in artificially inoculated tomato by Alternaria alternata. Conclusion: The essential oil and hydrosol extract can be used as a potential source of sustainable eco-friendly botanical fungicides to protect stored tomatoes from pathogens, saprophytic fungi causing bio-deterioration to a variety of food commodities.


2012 ◽  
Vol 22 (2) ◽  
pp. 179-184 ◽  
Author(s):  
L. Mugnaini ◽  
S. Nardoni ◽  
L. Pinto ◽  
L. Pistelli ◽  
M. Leonardi ◽  
...  

2019 ◽  
Vol 35 (6) ◽  
Author(s):  
Larissa Alves Secundo White ◽  
Arie Fitzgerald Blank ◽  
Paulo Roberto Gagliardi ◽  
Maria de Fátima Arrigoni-Blank ◽  
Daniela Aparecida de Castro Nizio ◽  
...  

Myrcia ovata, an endemic species to the Brazilian Atlantic Forest, presents antifungal properties. The phytopathogens Colletotrichum acutatum, Plenodomus destruens, and Thielaviopsis paradoxa are responsible for the diseases citrus postbloom fruit drop, sweet potato foot rot, and coconut stem bleeding, respectively. The antifungal activity of the essential oils of five M. ovata chemotypes (MYRO-159, nerolic acid chemotype; MYRO-180, nerolic acid + linalool chemotype; MYRO-388, geraniol chemotype; MYRO-157, citral + (E)-nerolidol chemotype; and MYRO-174, isopulegol + linalool chemotype), four major compounds (nerolic acid, nerolic acid + linalool, geraniol, and citral + (E)-nerolidol), and three pure compounds (citral, (E)-nerolidol, and linalool) against the fungi C. acutatum, P. destruens, and T. paradoxa were evaluated. For this, in vitro tests were conducted in a completely randomized design with three replications, testing concentrations (v/v) ranging from 0.01 to 1.0 μL.mL-1. All treatments presented toxicity at different levels to the three fungi. For C. acutatum, the essential oil from the individual MYRO-180 (nerolic acid + linalool chemotype) and its major compound showed the lowest Minimal Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) of 0.03 and 0.1 µL.mL-1, respectively. For P. destruens, the essential oil from the individual MYRO-159 (nerolic acid chemotype) presented the lowest MIC of 0.05 μL.mL-1. The nerolic acid + linalool chemotype and its major compound presented an MFC of 0.07 μL.mL-1. For T. paradoxa, the major compound citral + (E)-nerolidol stood out with the lowest MIC and MFC of 0.03 and 0.2 µL.mL-1, respectively. Linalool presented the lowest toxicity to the three tested fungi.


Author(s):  
Gabriela Silva Moura ◽  
Jonas Marcelo Jaski ◽  
Gilmar Franzener

<p>A cultura do morangueiro é severamente acometida por várias doenças, dentre elas o mofo cinzento, causado por <em>Botrytis cinerea</em> é considerada a doença mais severa na pós-colheita. Visando reduzir o uso de fungicidas sintéticos, vem sendo realizadas pesquisas propondo a utilização de métodos alternativos de controle de patógenos pós-colheita envolvendo a utilização de extratos vegetais, uso de biofungicidas e óleos essenciais. Assim, o presente trabalho teve como objetivo avaliar o potencial de diferentes extratos de própolis e plantas espontâneas no controle de podridão pós-colheita causada pelo fungo <em>B. cinerea</em> em morangos. Para avaliar a atividade antifúngica direta dos extratos etanólico de própolis e extratos aquosos de plantas espontâneas sobre <em>B. cinerea,</em> foi realizado o experimento <em>in vitro</em>, utilizando-se os tratamentos própolis verde 0,5%; própolis verde 2,5%; própolis marrom 0,5%; própolis marrom 2,5%; língua-de-vaca 10%; assa-peixe 10%; rubim 10%; tansagem 10%; testemunha (água). As medições do diâmetro das colônias foram iniciadas 48, 72 e 96 horas após a instalação do experimento. No experimento <em>in vivo </em>os frutos foram imersos nos tratamentos descritos acima. Após cinco dias avaliou-se a incidência e severidade da doença mofo cinzento e das doenças pós-colheita como antracnose e podridão de Rhizopus que apareceram no experimento. Utilizou-se o delineamento experimental inteiramente casualizado (DIC) com quatro e cinco repetições para o ensaio <em>in vitro</em> e <em>in vivo,</em> respectivamente<em>.</em> Os resultados mostram que os extratos etanólicos de própolis verde e marrom a 2,5% apresentaram <em>in vitro</em> e <em>in vivo </em>atividade antifúngica a <em>B. cinerea</em> e <em>Rhizopus nigricans,</em> respectivamente.</p><p align="center"><strong><em>Potential of propolis extracts and extracts etanol spontaneous plants aqueous in control of diseases of strawberry post-harvest</em></strong><strong><em></em></strong></p><p><strong>Abstract</strong><strong>: </strong>The strawberry crop is severely affected by various diseases, including gray mold, caused by <em>Botrytis cinerea</em> is considered the most severe disease in post-harvest fruit. To reduce the use of synthetic fungicides, has been carried out research proposing the use of alternative methods of control postharvest pathogens involving the use of plant extracts, use of biofungicides, essential oils among others. Thus, this study aimed to evaluate the potential of different propolis extracts and wild plants in the control of post-harvest rot caused by the fungus <em>Botrytis cinerea</em> in strawberries. To evaluate the direct antifungal activity of ethanolic extracts of propolis and aqueous extracts of wild plants of B. cinerea, the in vitro experiment was performed, using treatments propolis 0.5%; propolis 2.5%; brown propolis 0.5%; brown propolis 2.5%; control (water + alcohol 2%); cow tongue 10%; assa-fish 10%; rubim 10%; tansagem 10%; control (water). Measurements of the diameter of the colonies were started 48, 72 and 96 hours after installation of the experiment. Conducted the in vivo experiment in which the fruits of strawberry plants were immersed in the treatments described above. After five days we evaluated the incidence and severity of gray mold disease and post-harvest diseases such as anthracnose and Rhizopus rot appearing in the experiment. We used a completely randomized design (CRD) with four and five replicates for the in vitro assay and in vivo, respectively. The results show that ethanol extracts of green and brown propolis 2.5% presented in vitro and in vivo antifungal activity to <em>B. cinerea</em> and <em>Rhizopus nigricans</em> respectively.</p>


2020 ◽  
Vol 19 (1) ◽  
pp. 34-42
Author(s):  
Phanin Sintawarak ◽  
◽  
Suwimon Uthairatsamee ◽  
Tharnrat Keawgrajang ◽  
◽  
...  

Cylindrocladium reteaudii (Bugnic.) Boesew. is a severe pathogen which can cause leaf blight disease in Eucalyptus seedlings in tropical countries. This study investigated the antifungal activity of essential oils extracted from Acorus calamus L. rhizomes in inhibiting the growth of C. reteaudii, both in in vitro and in vivo experiments. The extraction of essential oils from rhizomes was carried out by hydro-distillation technique and the in vitro antifungal testing was done by using the poisoned food technique. The results indicated that an essential oil concentration of 2,000 ppm can completely inhibit the fungal growth with a 50% inhibitory concentration value of 54.76 ppm. For the in vivo experiment, it was found that an essential oil concentration of 500 ppm and Captan® of 1,000 ppm were not significantly different in inhibiting the growth of C. reteaudii. However, these two treatments significantly inhibited the fungal growth (p<0.05) when compared with the control treatments. Physiological and anatomical characteristics were investigated to check for the antifungal activity after the application of essential oils. Results showed that essential oil spraying had no effect on the leaf transpiration rate and temperature of the Eucalyptus seedlings, but the incident disease ratio was high when an essential oil concentration of more than 1,500 ppm was applied. Therefore, it can be inferred that the essential oils from A. calamus rhizomes at an optimum concentration can be an efficient antifungal compound with a potential to control leaf and shoot blight diseases in Eucalyptus seedlings in a nursery.


Sign in / Sign up

Export Citation Format

Share Document