botrytis cinerea
Recently Published Documents


TOTAL DOCUMENTS

3538
(FIVE YEARS 744)

H-INDEX

97
(FIVE YEARS 11)

Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 151
Author(s):  
Qiong Wang ◽  
Qi Zou ◽  
Zhaoji Dai ◽  
Ni Hong ◽  
Guoping Wang ◽  
...  

A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission.


2022 ◽  
Vol 12 ◽  
Author(s):  
Robin Huber ◽  
Laurence Marcourt ◽  
Alexey Koval ◽  
Sylvain Schnee ◽  
Davide Righi ◽  
...  

In this study, a series of complex phenylpropanoid derivatives were obtained by chemoenzymatic biotransformation of ferulic acid, caffeic acid, and a mixture of both acids using the enzymatic secretome of Botrytis cinerea. These substrates were incubated with fungal enzymes, and the reactions were monitored using state-of-the-art analytical methods. Under such conditions, a series of dimers, trimers, and tetramers were generated. The reactions were optimized and scaled up. The resulting mixtures were purified by high-resolution semi-preparative HPLC combined with dry load introduction. This approach generated a series of 23 phenylpropanoid derivatives, 11 of which are described here for the first time. These compounds are divided into 12 dimers, 9 trimers (including a completely new structural scaffold), and 2 tetramers. Elucidation of their structures was performed with classical spectroscopic methods such as NMR and HRESIMS analyses. The resulting compound series were analyzed for anti-Wnt activity in TNBC cells, with several derivatives demonstrating specific inhibition.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 180
Author(s):  
Samuele Risoli ◽  
Lorenzo Cotrozzi ◽  
Sabrina Sarrocco ◽  
Maria Nuzzaci ◽  
Elisa Pellegrini ◽  
...  

With the idea of summarizing the outcomes of studies focusing on the resistance induced by Trichoderma spp. against Botrytis cinerea in tomato, the present paper shows, for the first time, results of a meta-analysis performed on studies published from 2010 to 2021 concerning the cross-talk occurring in the tomato–Trichoderma-B. cinerea system. Starting from an initial set of 40 papers, the analysis was performed on 15 works and included nine parameters, as a result of a stringent selection mainly based on the availability of more than one article including the same indicator. The resulting work not only emphasizes the beneficial effects of Trichoderma in the control of grey mold in tomato leaves (reduction in disease intensity, severity and incidence and modulation of resistance genes in the host), but carefully drives the readers to reply to two questions: (i) What are the overall effects of Trichoderma on B. cinerea infection in tomato? (ii) Do the main effects of Trichoderma differ based on the tomato species, Trichoderma species, amount, type and duration of treatment? At the same time, this meta-analysis highlights some weak points of the available literature and should be seen as an invitation to improve future works to better the conceptualization and measure.


Plant Disease ◽  
2022 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
G. Tabone ◽  
I. Luongo ◽  
M. L. Gullino

Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 141
Author(s):  
Helena Santos ◽  
Catarina Augusto ◽  
Pedro Reis ◽  
Cecília Rego ◽  
Ana Cristina Figueiredo ◽  
...  

The aroma of grapes is cultivar dependent and is influenced by terroir, vineyard practices, and abiotic and biotic stresses. Trincadeira is a non-aromatic variety associated with low phenolic content and high sugar and organic acid levels. This cultivar, widely used in Portuguese wines, presents high susceptibility to Botrytis cinerea. This work aimed to characterise the volatile profile of Trincadeira grapes and how it changes under infection with B. cinerea. Thirty-six volatile organic compounds were identified, from different functional groups, namely alcohols, ester acetates, fatty acid esters, fatty acids, aldehydes, and products of the lipoxygenase pathway. Both free and glycosidic volatile organic compounds were analysed by Gas Chromatography and Gas Chromatography coupled to Mass Spectrometry for component quantification and identification, respectively. A multivariance analysis showed a clear discrimination between healthy and infected grapes with 2-trans-hexenal and isoamyl-acetate among the compounds identified as negative and positive markers of infection, respectively. Ester acetates such as 2-phenylethyl acetate, isoamyl acetate, and 2-methylbutyl acetate were present in higher contents in infected samples, whereas the contents of several fatty acid esters, such as ethyl decanoate and ethyl dodecanoate, decreased. These data were integrated with quantitative PCR data regarding genes involved in volatile metabolism and showed up-regulation of a gene coding for Hydroperoxide Lyase 2 in infected grapes. Altogether, these changes in volatile metabolism indicate an impact on the grape quality and may be related to defence against B. cinerea. The presence/absence of specific compounds might be used as infection biomarkers in the assessment of Trincadeira grapes’ quality.


2022 ◽  
Author(s):  
Yang Xu ◽  
Yameng Wang ◽  
Lulu Wang ◽  
Wenxing Liang ◽  
Qianqian Yang

Botrytis cinerea causes grey mold resulting in enormous financial loss. Fungicide resistance of B. cinerea has become a serious issue in food safety and agricultural environmental protection. Sodium valproate (SV) has been used in clinical trials, thus it is excellent candidate for fungicide development considering its safety. However, the antifungal activity remains unclear. SV was effective against B. cinerea by enhancing acetylation of histone H3, including H3K9ac, H3K14ac, and H3K56ac. A transcriptomics analysis revealed that the expression of 1,557 genes changed significantly in response to SV. A pathway enrichment analysis identified 16 significant GO terms, in which molecular functions were mainly involved. In addition, the expression levels of 13 genes involved in B. cinerea virulence and 5 genes involved in tomato immune response were altered by the SV treatment. These results indicate that SV inhibits B. cinerea by enhancing acetylation of histone H3 and modifying gene transcription. Thus, SV is an effective, safe potential antifungal agent for control of both pre- and post-harvest losses caused by B. cinerea.


2022 ◽  
Vol 291 ◽  
pp. 110547
Author(s):  
Fanyue Meng ◽  
Rui Lv ◽  
Mozhen Cheng ◽  
Fulei Mo ◽  
Nian Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document