scholarly journals New Aptamer/MoS2/Ni-Fe LDH Photoelectric Sensor for Bisphenol A Determination

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Hongjie Gao ◽  
Yun He ◽  
Jiankang Liu

Here, a new type of PEC aptamer sensor for bisphenol A (BPA) detection was developed, in which visible-light active MoS2/Ni-Fe LDH (layered double hydroxide) heterostructure and aptamer were used as photosensitive materials and biometric elements, respectively. The combination of an appropriate amount of MoS2 and Ni-Fe LDH enhances the photocurrent response, thereby promoting the construction of the PEC sensor. Therefore, we used a simple in situ growth method to fabricate a MoS2/Ni-Fe LDH sensor to detect the BPA content. The aptasensor based on aptamer/MoS2/Ni-Fe LDH displayed a linear range toward a BPA of 0.05–10 to 50–40,000 ng L−1, and it has excellent stability, selectivity and reproducibility. In addition, the proposed aptamer sensor is effective in evaluating real water samples, indicating that it has great potential for detecting BPA in real samples.

2020 ◽  
Vol 49 (13) ◽  
pp. 3956-3964 ◽  
Author(s):  
Muhammad Ahsan Iqbal ◽  
Luyi Sun ◽  
Anna Marie LaChance ◽  
Hao Ding ◽  
Michele Fedel

In this study, a calcium–aluminum-layered double hydroxide (CaAl-LDH) thin film was grown on an AA6082 aluminum alloy, for the very first time, by using a facile in situ growth method in an effort to investigate the CaAl-LDH structural geometry and corresponding corrosion resistance properties.


2019 ◽  
Vol 11 (32) ◽  
pp. 4184-4189 ◽  
Author(s):  
Milad Ghani

This is the first time that the in situ preparation of advanced extraction media based on a hierarchical layered double hydroxide (HLDH).


RSC Advances ◽  
2015 ◽  
Vol 5 (67) ◽  
pp. 54613-54621 ◽  
Author(s):  
Yanhui Ao ◽  
Dandan Wang ◽  
Peifang Wang ◽  
Chao Wang ◽  
Jun Hou ◽  
...  

A novel BiOBr/Co–Ni–NO3 layered double hydroxides (LDHs) nanocomposites were prepared by an in situ growth method. The as-prepared samples showed much higher adsorption and photocatalytic properties on organic dyes phenol.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 536
Author(s):  
Mosab Kaseem ◽  
Karna Ramachandraiah ◽  
Shakhawat Hossain ◽  
Burak Dikici

This review presents an overview of the recent developments in the synthesis of layered double hydroxide (LDH) on the anodized films of Mg alloys prepared by either conventional anodizing or plasma electrolytic oxidation (PEO) and the applications of the formed composite ceramics as smart chloride traps in corrosive environments. In this work, the main fabrication approaches including co-precipitation, in situ hydrothermal, and an anion exchange reaction are outlined. The unique structure of LDH nanocontainers enables them to intercalate several corrosion inhibitors and release them when required under the action of corrosion-relevant triggers. The influences of different variables, such as type of cations, the concentration of salts, pH, and temperature, immersion time during the formation of LDH/anodic film composites, on the electrochemical response are also highlighted. The correlation between the dissolution rate of PEO coating and the growth rate of the LDH film was discussed. The challenges and future development strategies of LDH/anodic films are also highlighted in terms of industrial applications of these materials.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 254
Author(s):  
Liushan Jiang ◽  
Fanshan Zeng ◽  
Rong Zhong ◽  
Yu Xie ◽  
Jianli Wang ◽  
...  

With the rapid consumption of fossil fuels, along with the ever-increasing environmental pollution, it is becoming a top priority to explore efficient photocatalysts for the production of renewable hydrogen and degradation of pollutants. Here, we fabricated a composite of g-C3N4/TiO2 via an in situ growth method under the conditions of high-temperature calcination. In this method, TiO2 nanowires with a large specific surface area could provide enough space for loading more g-C3N4 nanoparticles to obtain C3N4/TiO2 composites. Of note, the g-C3N4/TiO2 composite could effectively photocatalyze both the degradation of several pollutants and production of hydrogen, both of which are essential for environmental governance. Combining multiple characterizations and experiments, we found that the heterojunction constructed by the TiO2 and g-C3N4 could increase the photocatalytic ability of materials by prompting the separation of photogenerated carriers. Furthermore, the photocatalytic mechanism of the g-C3N4/TiO2 composite was also clarified in detail.


Chemosphere ◽  
2021 ◽  
pp. 130822
Author(s):  
Ramakrishna Dadigala ◽  
Rajkumar Bandi ◽  
Madhusudhan Alle ◽  
Bhagavanth Reddy Gangapuram ◽  
Veerabhadram Guttena ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document