scholarly journals Landfill Pollution Plume Survey in the Moroccan Tadla Using Spontaneous Potential

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 910
Author(s):  
Yousra El Mouine ◽  
Amal El Hamdi ◽  
Moad Morarech ◽  
Ilias Kacimi ◽  
Meryem Touzani ◽  
...  

In many parts of the world, the impact of open landfills on soils, biosphere, and groundwater has become a major concern. These landfills frequently generate pollution plumes, the contours of which can be delineated by non-intrusive geophysical measurements, but in arid environments, the high soils resistivity is usually an obstacle, which results in the low number of studies that have been carried out there. In addition, such prospecting using geophysical techniques do not provide information on the intensity of the processes occurring in the water table. This study was carried out on an uncontrolled landfill in the arid Tadla plain, Morocco’s main agricultural region. A survey based on geo-referenced spontaneous potential measurements was combined with measurements of anoxic conditions (Eh-pH and O2 equilibrating partial pressure) in the groundwater and leachates, in order to highlight a pollution plume and its geometry. The range of spontaneous potential measurement is wide, reaching 155 mV. Ponds of leachate with high electrical conductivity (20 to 40 mS cm−1) form within the landfill, and present very reducing conditions down to sulphate reduction and methanisation. The plume is slowly but continuously supplied with these highly reducing and organic carbon-rich leachates from the landfill. Its direction is towards N-NW, stable throughout the season, and consistent with local knowledge of groundwater flow. The fast flow of the water table suggests pollution over long distances that should be monitored in the future. The results obtained are spatially contrasting and stable, and show that such techniques can be used on a resistive medium of arid environments.

Author(s):  
Sorena Lo ◽  
Li Jiang ◽  
Savannah Stacks ◽  
Haixia Lin ◽  
Nirmala Parajuli

Aberrant complement activation leads to tissue damage during kidney transplantation, and it is recognized as an important target for therapeutic intervention (6, 19, 35, 64). However, it is not clear whether cold storage (CS) triggers the complement pathway in transplanted kidneys. The goal of this study was to determine the impact of CS on complement activation in renal transplants. Male Lewis and Fischer rats were used, and donor rat kidneys were exposed to 4 h or 18 h of CS followed by transplantation (CS+Transplant). To study CS-induced effects, a group with no CS was included in which the kidney was removed and transplanted back to the same rat (autotransplantation, ATx). Complement proteins (C3 and C5b-9) were evaluated with western blotting (reducing and non-reducing conditions) and immunostaining. Western blot of renal extracts or serum indicated that the levels of C3 and C5b-9 increased after CS+Transplant compared to ATx. Quite strikingly, intracellular C3 was profoundly elevated within renal tubules after CS+Transplant but was absent in Sham or ATx groups, which showed only extratubular C3. Similarly, C5b-9 immunofluorescence staining of renal sections showed an increase in C5b-9 deposits in kidneys after CS+Transplant. Real-time PCR (SYBR Green) showed increased expression of CD11b and CD11c, components of complement receptors 3 and 4, respectively, as well as inflammatory markers such as TNF-α. In addition, recombinant TNF-α significantly increased C3 levels in renal cells. Collectively, these results demonstrate that CS activates the complement system in renal transplants.


2021 ◽  
Author(s):  
Matthew Saunders ◽  
Ruchita Ingle ◽  
Shane Regan

<p>Peatland ecosystems are integral to the mitigation of climate change as they represent significant terrestrial carbon sinks. In Ireland, peatlands cover ~20% of the land area but hold up to 75% of the soil organic carbon stock however many of these ecosystems (~85% of the total area) have been degraded due to anthropogenic activities such as agriculture, forestry and extraction for horticulture or energy. Furthermore, the carbon stocks that remain in these systems are vulnerable to inter-annual variation in climate, such as changes in precipitation and temperature, which can alter the hydrological status of these systems leading to changes in key biogeochemical processes and carbon and greenhouse gas exchange.  During 2018 exceptional drought and heatwave conditions were reported across Northwestern Europe, where reductions in precipitation coupled with elevated temperatures were observed. Exceptional inter-annual climatic variability was also observed at Clara bog, a near natural raised bog in the Irish midlands when data from 2018 and 2019 were compared. Precipitation in 2018 was ~300 mm lower than 2019 while the average mean annual temperature was 0.5°C higher. The reduction in precipitation, particularly during the growing season in 2018, consistently lowered the water table where ~150 consecutive days where the water table was >5cm below the surface of the bog were observed at the central ecotope location. The differing hydrological conditions between years resulted in the study area, as determined by the flux footprint of the eddy covariance tower, acting as a net source of carbon of 53.5 g C m<sup>-2</sup> in 2018 and a net sink of 125.2 g C m<sup>-2</sup> in 2019. The differences in the carbon dynamics between years were primarily driven by enhanced ecosystem respiration (R<sub>eco</sub>) and lower rates of Gross Primary Productivity (GPP) in the drier year, where the maximum monthly ratio of GPP:R<sub>eco</sub> during the growing season was 0.96 g C m<sup>-2</sup> month in 2018 and 1.14 g C m<sup>-2</sup> month in 2019. This study highlights both the vulnerability and resilience of these ecosystems to exceptional inter-annual climatic variability and emphasises the need for long-term monitoring networks to enhance our understanding of the impacts of these events when they occur.</p>


Author(s):  
Ulrich Noseck ◽  
Vaclava Havlova ◽  
Juhani Suksi ◽  
Thomas Brasser ◽  
Radek Cervinka

Groundwater data from the natural analogue site Ruprechtov have been evaluated with special emphasis on the uranium behaviour in the so-called uranium-rich clay/lignite horizon. In this horizon in-situ Eh-values in the range of −160 to −280 mV seem to be determined by the SO42−/HS− couple. Under these conditions U(IV) is expected to be the preferential redox state in solution. However, on-site measurements in groundwater from the clay/lignite horizon show only a fraction of about 20% occurring in the reduced state U(IV). Thermodynamic calculations reveal that the high CO2 partial pressure in the clay/lignite horizon can stabilise hexavalent uranium, which explains the occurrence of U(VI). The calculations also indicate that the low uranium concentrations in the range between 0.2 and 2.1μg/l are controlled by amorphous UO2 and/or the U(IV) phosphate mineral ningyoite. This confirms the findings from previous work that the uranium (IV) mineral phases are long-term stable under the reducing conditions in the clay/lignite horizon without any signatures for uranium mobilisation. It supports the current knowledge of the geological development of the site and is also another important indication for the long-term stability of the sedimentary system itself, namely of the reducing geochemical conditions in the near-surface (30m to 60 m deep) clay/lignite horizon. Further work with respect to the impact of changes in redox conditions on the uranium speciation is on the way.


2012 ◽  
Vol 9 (11) ◽  
pp. 13155-13189
Author(s):  
S. Baram ◽  
Z. Ronen ◽  
D. Kurtzman ◽  
C. Küells ◽  
O. Dahan

Abstract. A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water-content and on the chemical and isotopic composition of the sediment and pore-water in it. The isotopic composition of water stable isotopes (δ18O and δ2H) in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ∼3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl-) concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a Desiccation-Crack-Induced Salinization (DCIS) conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.


2020 ◽  
Vol 150 ◽  
pp. 01001
Author(s):  
M. Lahmar ◽  
N. El Khodrani ◽  
S. Omrania ◽  
H. Dakak ◽  
R. Moussadek ◽  
...  

The Gharb plain is the largest agricultural area in Morocco. It is characterized by fertile soils and the availability of water either from surface or groundwater which allowed intensive agriculture. The aim of this research work is to study the impact of this land management on the quality of water and soil. The study was done for the irrigated perimeter of Sidi Yahya belonging to the province of Sidi Slimane, Gharb (Morocco). Depth of water table and water pH were measured in situ while water and soil samples were collected and brought to the laboratory for their physico-chemical analyses. Sampling of 33water wells and soil samples, from six different zones, was done between May and October 2018. Analysis of variance (ANOVA) was used to check if mean water and soil parameters differed between zones. The results showed that the minimal and maximal water table depth were 6 and 96 m, respectively. Also, slightly more than half of the wells (51.5%) were inadequate for irrigation since they were either highly or extremely saline. Furthermore, soils were poor to moderately poor in organic matter but very rich in potassium and the phosphorus content was highly variable. Based on the statistical analysis, it is clear that the six zones had significantly different means for CaCO3, pH, OM, and exchangeable sodium percentage. Soil degradation like pollution and salinization may occur in this region if poor quality water is used for irrigation and if land is mismanaged. This research work can be considered as a first step towards a program for monitoring the quality of soil and water for adapting the land management with the final objective of securing high productivity and sustainable use of soil and water resources.


2013 ◽  
Vol 17 (4) ◽  
pp. 1533-1545 ◽  
Author(s):  
S. Baram ◽  
Z. Ronen ◽  
D. Kurtzman ◽  
C. Külls ◽  
O. Dahan

Abstract. A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H) in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl−) concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS) conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Saber Rashid ◽  
N. Islami ◽  
A. K. Ariffin ◽  
M. Ridha ◽  
S. Fonna

The aim of this study is to investigate the impact of immersion time, at different time values for two cases, with stressed and no stressed on materials. This study is conducted using SUS304 material with the presence of 3.5% NaCl at the range of stresses for the specimens lower than the yield strength.  The geometry of the C-ring specimen was selected for 18.974 mm and 1.244 mm for the outer diameters and the thickness respectively. The immersion time effect was investigated using the half-cell potential measurement following the ASTM G-38 standard. The approach of corrosion environment was applied to resemble the condition of loading history. Three levels of stresses were designed and applied in finite element analysis and the results known as the parameters of stress-corrosion measurement. The ASTM G-38 standard is prominent for making C-ring stress-corrosion for elastic stress analysis. The stress-corrosion test was performed at two parameters, fixed stress and no stress. The value of stresses for fixed stress was chosen for 179.199 MPa, 328.665 MPa and 460.131 MPa, correspondingly. The immersion time were selected from 0, 10 and 30 days. The electrochemical result shows that the immersion time did not affect vastly to the corrosion behavior for no stress-corrosion compared with fixed stress. The corrosion rate increases proportionally with the time immersion increments due to the inability of the steel layer protection to regenerate itself. Subsequently, it is also due to the metal was exposed to plastic deformation that resulting the internal stresses due to the plastic anisotropy of the grains.


2004 ◽  
Vol 50 (5) ◽  
pp. 347-353 ◽  
Author(s):  
S. Schulze ◽  
A. Tiehm

Intrinsic biodegradation, representing the key process in Natural Attenuation, was examined at a tar-oil polluted disposal site. Methods to assess microbial natural attenuation of BTEX and PAH included analysis of groundwater hydrochemistry, pollutant profiles, composition of the microflora, and microcosm studies. In the polluted groundwater downgradient the disposal site, oxygen and nitrate were only available adjacent to the groundwater table and at the plume fringes. In the anaerobic core of the plume, a sequence of predominating redox zones (methanogenic, sulphate-reducing, Fe(III)-reducing) was observed. Changing pollutant profiles in the plume indicated active biodegradation processes, e.g. biodegradation of toluene and naphthalene in the anaerobic zones. High numbers of microorganisms capable of growing under anaerobic conditions and of aerobic pollutant degrading organisms confirmed the impact of biodegradation at this site. In microcosm studies, the autochthonous microflora utilised toluene, ethylbenzene, and naphthalene under sulfate- and Fe(III)-reducing conditions. Additionally, benzene and phenanthrene were degraded in the presence of Fe(III). Under aerobic conditions, all BTEX and PAH were rapidly degraded. The microcosm studies in particular were suitable to examine the role of specific electron acceptors, and represented an important component of the multiple line of evidence concept to assess natural attenuation.


2016 ◽  
Vol 13 (9) ◽  
pp. 2637-2651 ◽  
Author(s):  
Järvi Järveoja ◽  
Matthias Peichl ◽  
Martin Maddison ◽  
Kaido Soosaar ◽  
Kai Vellak ◽  
...  

Abstract. Peatland restoration may provide a potential after-use option to mitigate the negative climate impact of abandoned peat extraction areas; currently, however, knowledge about restoration effects on the annual balances of carbon (C) and greenhouse gas (GHG) exchanges is still limited. The aim of this study was to investigate the impact of contrasting mean water table levels (WTLs) on the annual C and GHG balances of restoration treatments with high (ResH) and low (ResL) WTL relative to an unrestored bare peat (BP) site. Measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes were conducted over a full year using the closed chamber method and complemented by measurements of abiotic controls and vegetation cover. Three years following restoration, the difference in the mean WTL resulted in higher bryophyte and lower vascular plant cover in ResH relative to ResL. Consequently, greater gross primary production and autotrophic respiration associated with greater vascular plant cover were observed in ResL compared to ResH. However, the means of the measured net ecosystem CO2 exchanges (NEE) were not significantly different between ResH and ResL. Similarly, no significant differences were observed in the respective means of CH4 and N2O exchanges. In comparison to the two restored sites, greater net CO2, similar CH4 and greater N2O emissions occurred in BP. On the annual scale, ResH, ResL and BP were C sources of 111, 103 and 268 g C m−2 yr−1 and had positive GHG balances of 4.1, 3.8 and 10.2 t CO2 eq ha−1 yr−1, respectively. Thus, the different WTLs had a limited impact on the C and GHG balances in the two restored treatments 3 years following restoration. However, the C and GHG balances in ResH and ResL were considerably lower than in BP due to the large reduction in CO2 emissions. This study therefore suggests that restoration may serve as an effective method to mitigate the negative climate impacts of abandoned peat extraction areas.


Soil Science ◽  
2014 ◽  
Vol 179 (2) ◽  
pp. 57-67 ◽  
Author(s):  
Jiangbo Han ◽  
Zhifang Zhou ◽  
Zhimin Fu ◽  
Jinguo Wang

Sign in / Sign up

Export Citation Format

Share Document