stress corrosion
Recently Published Documents


TOTAL DOCUMENTS

7809
(FIVE YEARS 830)

H-INDEX

84
(FIVE YEARS 12)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 497
Author(s):  
Shuai Tian ◽  
Zhenbao Liu ◽  
Renli Fu ◽  
Chaofang Dong ◽  
Xiaohui Wang

Different microstructures were obtained under various thermal conditions by adjusting the heat treatment parameters of the Cr-Co-Ni-Mo series of ultra-high strength stainless steel. The effect of organizational evolution on the stress corrosion cracking (SCC) of the Cr-Co-Ni-Mo series of ultra-high strength stainless steel was investigated using potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and other test methods in combination with slow strain rate tensile tests (SSRTs). The results show that the Mo- and Cr-rich clusters and precipitation of the Laves phase reduce the corrosion resistance, while increasing the austenite content can improve the corrosion resistance. The Cr-Co-Ni-Mo series of ultra-high strength stainless steel has a high SCC resistance after quenching at 1080 °C and undergoing deep cooling (DC) treatment at −73 °C. With increasing holding time, the strength of the underaged and peak-aged specimens increases, but the passivation and SCC resistance decreases. At the overaged temperature, the specimen has good SCC resistance after a short holding time, which is attributed to its higher austenite content and lower dislocation density. As a stable hydrogen trap in steel, austenite effectively improves the SCC resistance of steel. However, under the coupled action of hydrogen and stress, martensitic transformation occurs due to the decrease in the lamination energy of austenite, and the weak martensitic interface becomes the preferred location for crack initiation and propagation.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Orit Avior ◽  
Noa Ben Ghedalia-Peled ◽  
Tomer Ron ◽  
Jeremy Goldman ◽  
Razi Vago ◽  
...  

Due to the excellent biocompatibility of Zn and Zn-based alloys, researchers have shown great interest in developing biodegradable implants based on zinc. Furthermore, zinc is an essential component of many enzymes and proteins. The human body requires ~15 mg of Zn per day, and there is minimal concern for systemic toxicity from a small zinc-based cardiovascular implant, such as an arterial stent. However, biodegradable Zn-based implants have been shown to provoke local fibrous encapsulation reactions that may isolate the implant from its surrounding environment and interfere with implant function. The development of biodegradable implants made from Zn-Fe-Ca alloy was designed to overcome the problem of fibrous encapsulation. In a previous study made by the authors, the Zn-Fe-Ca system demonstrated a suitable corrosion rate that was higher than that of pure Zn and Zn-Fe alloy. The Zn-Fe-Ca system also showed adequate mechanical properties and a unique microstructure that contained a secondary Ca-reach phase. This has raised the promise that the tested alloy could serve as a biodegradable implant metal. The present study was conducted to further evaluate this promising Zn alloy. Here, we assessed the material’s corrosion performance in terms of cyclic potentiodynamic polarization analysis and stress corrosion behavior in terms of slow strain rate testing (SSRT). We also assessed the ability of cells to survive on the alloy surface by direct cell culture test. The results indicate that the alloy develops pitting corrosion, but not stress corrosion under phosphate-buffered saline (PBS) and air environment. The direct cell viability test demonstrates the successful adherence and growth of cells on the alloy surface.


2022 ◽  
Vol 2155 (1) ◽  
pp. 012011
Author(s):  
A V Yarovchuk ◽  
A S Dikov ◽  
K V Tsay

Abstract The results of SEM studies of fracture surfaces for the 12Cr18Ni9 austenitic steel ruptured under a fixedtensile load in FeCl3 water solutionand in air are presented. The samples of austenized, sensitized at 650° and irradiated with neutrons (to 1020n/cm2) steel were examined. It was shown thatirradiation hardening and sensitizing annealing increased the susceptibility of steel to intergranular cracking in corrosive solution. Structural features of formation of the strain-induced α’-martensite and its reinforcing effect on fracture in various environments are discussed.


Sign in / Sign up

Export Citation Format

Share Document