Antiprobcotron magnetic trap for charged dust particles in space experiments

Author(s):  
Lev G. D’YACHKOV ◽  
Mikhail M. VASILYEV ◽  
Oleg F. PETROV ◽  
Sergey F. SAVIN ◽  
Igor V. CHURILO

We discuss the possibility of using static magnetic traps as an alternative to electrostatic traps for forming and confining structures of charged dust particles in a gas discharge plasma in the context of our study of strongly interacting Coulomb systems. Some advantages of confining structures in magnetic traps over electrostatic ones are shown. Also we provide a review of the related researches carried out first in laboratory conditions, and then under microgravity conditions including the motivation of performing the experiments aboard the International Space Station (ISS). The preparations of a new space experiment «Coulomb-magnet» as well as the differences of a new equipment from previously used are described. We proposed the main tasks of the new experiment as a study of the dynamics and structure of active monodisperse and polydisperse macroparticles in an inhomogeneous magnetic field under microgravity conditions, including phase transitions and the evolution of such systems in the kinetic heating of dust particles by laser radiation. Key words: Coulomb structures, magnetic trap, antiprobotron, diamagnetic particles, dust particles, microgravity.

2016 ◽  
Vol 116 (4) ◽  
pp. 45001 ◽  
Author(s):  
T. S. Ramazanov ◽  
L. G. D'yachkov ◽  
K. N. Dzhumagulova ◽  
M. T. Gabdullin ◽  
M. K. Dosbolayev ◽  
...  

2012 ◽  
Vol 86 (3) ◽  
Author(s):  
O. F. Petrov ◽  
M. I. Myasnikov ◽  
L. G. D’yachkov ◽  
M. M. Vasiliev ◽  
V. E. Fortov ◽  
...  

2017 ◽  
Vol 124 (2) ◽  
pp. 318-324 ◽  
Author(s):  
M. I. Myasnikov ◽  
L. G. D’yachkov ◽  
O. F. Petrov ◽  
M. M. Vasiliev ◽  
V. E. Fortov ◽  
...  

2014 ◽  
Vol 50 (5) ◽  
pp. 442-456
Author(s):  
O. F. Petrov ◽  
O. S. Vaulina ◽  
M. M. Vasiliev ◽  
E. A. Lisin ◽  
M. I. Myasnikov ◽  
...  

2019 ◽  
Vol 12 (3) ◽  
pp. 1673-1683 ◽  
Author(s):  
Ove Havnes ◽  
Tarjei Antonsen ◽  
Gerd Baumgarten ◽  
Thomas W. Hartquist ◽  
Alexander Biebricher ◽  
...  

Abstract. We present a new method of analyzing measurements of mesospheric dust made with DUSTY rocket-borne Faraday cup probes. It can yield the variation in fundamental dust parameters through a mesospheric cloud with an altitude resolution down to 10 cm or less if plasma probes give the plasma density variations with similar height resolution. A DUSTY probe was the first probe that unambiguously detected charged dust and aerosol particles in the Earth's mesosphere. DUSTY excluded the ambient plasma by various biased grids, which however allowed dust particles with radii above a few nanometers to enter, and it measured the flux of charged dust particles. The flux measurements directly yielded the total ambient dust charge density. We extend the analysis of DUSTY data by using the impact currents on its main grid and the bottom plate as before, together with a dust charging model and a secondary charge production model, to allow the determination of fundamental parameters, such as dust radius, charge number, and total dust density. We demonstrate the utility of the new analysis technique by considering observations made with the DUSTY probes during the MAXIDUSTY rocket campaign in June–July 2016 and comparing the results with those of other instruments (lidar and photometer) also used in the campaign. In the present version we have used monodisperse dust size distributions.


1998 ◽  
Vol 551 ◽  
Author(s):  
H.-J. Fecht ◽  
R.K. Wunderlich

AbstractThe analysis of nucleation and growth processes relies mostly on circular arguments since basic thermophysical properties necessary, such as the Gibbs free energy (enthalpy of crystallization, specific heat), the density, emissivity, thermal conductivity (diffusivity), diffusion coefficients, surface tension, viscosity, interfacial crystal / liquid tension, etc. are generally unknown with sufficient precision and therefore often deduced from insufficient linear interpolations from the elements. The paucity of thermophysical property data for commercial materials as well as research materials is mostly a result of the experimental difficulties arising from the unwanted convection and reactions of melts with containers at high temperatures. An overview will be given on the results of thermophysical property measurements during several different space flights using containerless processing methods. Furthermore, a perspective on a future measurement program of thermophysical properties supported by the European Space Agency is described. In this regard, the International Space Station is considered as the ideal laboratory for high precision measurements of thermophysical properties of fluids which help to improve manufacturing processes for a number of key industries.


2013 ◽  
Vol 79 (4) ◽  
pp. 405-411 ◽  
Author(s):  
SERGEY I. POPEL ◽  
LEV M. ZELENYI

AbstractFrom the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to “horizon glow” and “streamers” above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.


Author(s):  
Stephen Quirk ◽  
Raquel L. Lieberman

Actophorin, a protein that severs actin filaments isolated from the amoeba Acanthamoeba castellanii, was employed as a test case for crystallization under microgravity. Crystals of purified actophorin were grown under microgravity conditions aboard the International Space Station (ISS) utilizing an interactive crystallization setup between the ISS crew and ground-based experimenters. Crystals grew in conditions similar to those grown on earth. The structure was solved by molecular replacement at a resolution of 1.65 Å. Surprisingly, the structure reveals conformational changes in a remote β-turn region that were previously associated with actophorin phosphorylated at the terminal residue Ser1. Although crystallization under microgravity did not yield a higher resolution than crystals grown under typical laboratory conditions, the conformation of actophorin obtained from solving the structure suggests greater flexibility in the actophorin β-turn than previously appreciated and may be beneficial for the binding of actophorin to actin filaments.


Sign in / Sign up

Export Citation Format

Share Document