space agency
Recently Published Documents


TOTAL DOCUMENTS

1323
(FIVE YEARS 438)

H-INDEX

35
(FIVE YEARS 9)

Author(s):  
Christian Siemes ◽  
Stephen Maddox ◽  
Olivier Carraz ◽  
Trevor Cross ◽  
Steven George ◽  
...  

AbstractCold Atom technology has undergone rapid development in recent years and has been demonstrated in space in the form of cold atom scientific experiments and technology demonstrators, but has so far not been used as the fundamental sensor technology in a science mission. The European Space Agency therefore funded a 7-month project to define the CASPA-ADM mission concept, which serves to demonstrate cold-atom interferometer (CAI) accelerometer technology in space. To make the mission concept useful beyond the technology demonstration, it aims at providing observations of thermosphere mass density in the altitude region of 300–400 km, which is presently not well covered with observations by other missions. The goal for the accuracy of the thermosphere density observations is 1% of the signal, which will enable the study of gas–surface interactions as well as the observation of atmospheric waves. To reach this accuracy, the CAI accelerometer is complemented with a neutral mass spectrometer, ram wind sensor, and a star sensor. The neutral mass spectrometer data is considered valuable on its own since the last measurements of atmospheric composition and temperature in the targeted altitude range date back to 1980s. A multi-frequency GNSS receiver provides not only precise positions, but also thermosphere density observations with a lower resolution along the orbit, which can be used to validate the CAI accelerometer measurements. In this paper, we provide an overview of the mission concept and its objectives, the orbit selection, and derive first requirements for the scientific payload.


2022 ◽  
Vol 14 (4) ◽  
pp. 58-66
Author(s):  
Aleksandr Kozyukov ◽  
N. Gamzatov ◽  
Sergey Grechanyy ◽  
Konstantin Zolnikov ◽  
I. Strukov ◽  
...  

The analysis of information on the stability of the electronic component base (ECB) in the development of radio-electronic equipment (REE) of spacecraft (spacecraft) is an important and urgent task. The paper considers the main components of the approaches of foreign organizations developing radio space technology to ensure its radiation resistance. The design approaches of Thales Alenia Space, Airbus Defense and Space, and the European Space Agency are presented. The article outlines the main directions for optimizing the procedures for the preliminary selection of ECB, which consist in ensuring the required resistance of REE SC at the ECB level with ensuring the reliability of data on durability, in minimizing the costs of applying resistance enhancement measures (through the use of a promising ECB with increased resistance characteristics), to replace ECB.


Author(s):  
Martin Azkarate ◽  
Levin Gerdes ◽  
Tim Wiese ◽  
Martin Zwick ◽  
Marco Pagnamenta ◽  
...  

2022 ◽  
Vol 2161 (1) ◽  
pp. 012037
Author(s):  
Abhijit Banerjee ◽  
Rina Bhattacharya

Abstract The very inquisition of the humanity always remains about its parent star of this planetary system. Scientists across the world are always egger to investigate the details of the phenomenon of the solar flares and coronal mass ejections (CMEs). There are some fundamental mysteries related to the solar coronal heating along with the acceleration of the solar wind and energetic particles. In this context we have discussed on the solar radio signal data obtained from the Parker Solar Probe (PSP) mission of National Aeronautics and Space Administration (NASA), USA in course of its journey towards the Sun and the very recent data of Solar and Heliospheric Observatory (SOHO) space probe of European Space Agency (ESA) and NASA. In this work the simultaneous and periodical analysis of the data from the SOHO and PSP will light into the delicate features of the near and far Earth observations on the solar coronal mass ejections related dynamics and that reveals some interesting facts in relation to the solar magnetic field.


2022 ◽  
Vol 964 (1) ◽  
pp. 012007
Author(s):  
Hoang Phi Phung ◽  
Lam Dao Nguyen ◽  
Nguyen Van Anh Vu ◽  
Nguyen Kim Thanh ◽  
Le Van Trung

Abstract Rice is one of the main agricultural crops and plays an important role in food security. Therefore, it is essential to propose a method for monitoring the distribution of rice yield. Radar remote sensing data sources provide a sustainable solution for rice monitoring challenges in the countries located in the tropical monsoon region like Vietnam. The SAR (Synthetic Aperture Radar) remote sensing data from the Sentinel-1 satellite provided by the European Space Agency (ESA) is free of charge, has a large coverage and high spatial-temporal resolution. In this paper, rice growing areas in the An Giang province of Vietnam Mekong Delta were analyzed, which demonstrates the potential applications of multi-temporal data and proposes a method to estimate rice yield for agricultural management. The analysis results showed that in 2018 the Winter-Spring rice crop has the highest yield, and the Autumn-Winter crop has the lowest yield. Accurate and timely estimation of rice yield and production can provide important information in terms of spatial distribution and seasonal yield for government and decision-makers in policy making related to import and export.


2021 ◽  
pp. 277-278
Author(s):  
Antje Senarclens de Grancy ◽  
Heidrun Zettelbauer
Keyword(s):  

2021 ◽  
Vol 13 (24) ◽  
pp. 5155
Author(s):  
Ester Carbó ◽  
Pablo Juan ◽  
Carlos Añó ◽  
Somnath Chaudhuri ◽  
Carlos Diaz-Avalos ◽  
...  

The prediction of spatial and temporal variation of soil water content brings numerous benefits in the studies of soil. However, it requires a considerable number of covariates to be included in the study, complicating the analysis. Integrated nested Laplace approximations (INLA) with stochastic partial differential equation (SPDE) methodology is a possible approach that allows the inclusion of covariates in an easy way. The current study has been conducted using INLA-SPDE to study soil moisture in the area of the Valencia Anchor Station (VAS), soil moisture validation site for the European Space Agency SMOS (Soil Moisture and Ocean Salinity). The data used were collected in a typical ecosystem of the semiarid Mediterranean conditions, subdivided into physio-hydrological units (SMOS units) which presents a certain degree of internal uniformity with respect to hydrological parameters and capture the spatial and temporal variation of soil moisture at the local fine scale. The paper advances the knowledge of the influence of hydrodynamic properties on VAS soil moisture (texture, porosity/bulk density and soil organic matter and land use). With the goal of understanding the factors that affect the variability of soil moisture in the SMOS pixel (50 km × 50 km), five states of soil moisture are proposed. We observed that the model with all covariates and spatial effect has the lowest DIC value. In addition, the correlation coefficient was close to 1 for the relationship between observed and predicted values. The methodology applied presents the possibility to analyze the significance of different covariates having spatial and temporal effects. This process is substantially faster and more effective than traditional kriging. The findings of this study demonstrate an advancement in that framework, demonstrating that it is faster than previous methodologies, provides significance of individual covariates, is reproducible, and is easy to compare with models.


Abstract The Boundary-layer Air Quality-analysis Using Network of Instruments (BAQUNIN) supersite is presented. The site has been collecting pollutant concentrations and meteorological parameters since 2017. Currently, BAQUNIN consists of three observation sites located in the city center of Rome (Italy), and in the neighboring semi-rural and rural areas. To the best of our knowledge, BAQUNIN is one of the first observatories in the world to involve several passive and active ground-based instruments installed in multiple locations, managed by different research institutions, in a highly polluted megacity affected by coastal weather regimes. BAQUNIN has been promoted by the European Space Agency to establish an experimental research infrastructure for the validation of present and future satellite atmospheric products and the in-depth investigation of the planetary and urban boundary layers. Here, the main characteristics of the three sites are described, providing information about the complex instrumental suite and the produced data. The supersite adopts a policy of free sharing of its validated dataset with the community. Finally, the BAQUNIN potential is demonstrated with a case study involving a major fire that occurred in a waste treatment plant near the urban center of Rome, and the consequent investigation of the plume properties revealed by different instruments.


Author(s):  
Devina Cristine Marubin ◽  
◽  
Sim Sy Yi ◽  

Can-Sized satellite (canSAT) is a small satellite that is used for educational purpose. CanSAT offer student to build their satellites with their creativity which make the learning process more effective. In Malaysia, SiswaSAT is held by the Malaysia Space Agency for students in different categories to participate and build their satellites according to rules set and it should be a low-cost project. CanSAT can be divided into few parts which are communication system, onboard data acquisition, ground control station and power system. The power system is one of the important and heaviest subsystems, it needed to supply power, but weight and size are one of the main concerned as the canSAT should not exceed the required weight and selecting power supply that is matched with the overall power budget that has small size and lightweight is challenging. Therefore, the power supply selection should consider this detail. The power distribution design should be able to supply an appropriate amount of current and voltage to the components according to their specification. This study aims to develop and test the proposed prototype which is named ScoreSAT able to provide data and have enough power supply for the whole operation. Therefore, an initiative to develop the appropriate power distribution design for canSAT is taken to overcome the problem of the power system. Moreover, each subsystem needs to be tested by obtaining the results from the onboard data acquisition and transmit the data using the communication system before integrating into the power system. ScoreSAT prototype needs to carry the system that is mounted inside, thus the space inside the prototype needs to be fully utilized for the whole system to fit in. ScoreSAT completes the mission by obtaining data acquisition during the operation.


Sign in / Sign up

Export Citation Format

Share Document